Abstract
The increase in intracellular cyclic GMP concentrations in response to muscarinic-receptor activation in N1E-115 neuroblastoma cells is dependent on extracellular Ca2+ ion. The calcium ionophore A23187 can also evoke an increase in cyclic GMP in the presence of Ca2+ ion. Most (about 85%) of the guanylate cyclase activity of broken-cell preparations is found in the soluble fraction. The soluble enzyme can utilize MnGTP (Km = 55 micrometer), MgGTP (Km = 310 micrometer) and CaGTP (Km greater than 500 micrometer) as substrates. Free GTP is a strong competitive inhibitor (Ki approximately 20 micrometer). The enzyme possesses an allosteric binding site for free metal ions (Ca2+, Mg2+ and Mn2+). The membrane-bound guanylate cyclase is qualitatively similar to the soluble form, but has lower affinity for the metal-GTP substrates. Entry of Ca2+ into cells may increase cyclic GMP concentration by activating guanylate cyclase through an indirect mechanism.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alberts P., Bartfai T. Muscarinic acetylcholine receptor from rat brain. Partial purification and characterization. J Biol Chem. 1976 Mar 25;251(6):1543–1547. [PubMed] [Google Scholar]
- Amano T., Richelson E., Nirenberg M. Neurotransmitter synthesis by neuroblastoma clones (neuroblast differentiation-cell culture-choline acetyltransferase-acetylcholinesterase-tyrosine hydroxylase-axons-dendrites). Proc Natl Acad Sci U S A. 1972 Jan;69(1):258–263. doi: 10.1073/pnas.69.1.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker P. F. Regulation of intracellular Ca and Mg in squid axons. Fed Proc. 1976 Dec;35(14):2589–2595. [PubMed] [Google Scholar]
- Brooker G., Thomas L. J., Jr, Appleman M. M. The assay of adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate in biological materials by enzymatic radioisotopic displacement. Biochemistry. 1968 Dec;7(12):4177–4181. doi: 10.1021/bi00852a006. [DOI] [PubMed] [Google Scholar]
- Brostrom C. O., Huang Y. C., Breckenridge B. M., Wolff D. J. Identification of a calcium-binding protein as a calcium-dependent regulator of brain adenylate cyclase. Proc Natl Acad Sci U S A. 1975 Jan;72(1):64–68. doi: 10.1073/pnas.72.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burgen A. S., Hiley C. R., Young J. M. The binding of (3H)-propylbenzilycholine mustard by longitudinal muscle strips from guinea-pig small intestine. Br J Pharmacol. 1974 Jan;50(1):145–151. doi: 10.1111/j.1476-5381.1974.tb09602.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Böhme E. Guanyl-Cyclase. Bildung von Guanosin-3':5'-monophosphat in Niere und anderen Geweben der Ratte. Eur J Biochem. 1970 Jul;14(3):422–429. doi: 10.1111/j.1432-1033.1970.tb00306.x. [DOI] [PubMed] [Google Scholar]
- Böhme E., Jung R., Mechler I. Guanylate cyclase in human platelets. Methods Enzymol. 1974;38:199–202. doi: 10.1016/0076-6879(74)38032-9. [DOI] [PubMed] [Google Scholar]
- Cheung W. Y., Bradham L. S., Lynch T. J., Lin Y. M., Tallant E. A. Protein activator of cyclic 3':5'-nucleotide phosphodiesterase of bovine or rat brain also activates its adenylate cyclase. Biochem Biophys Res Commun. 1975 Oct 6;66(3):1055–1062. doi: 10.1016/0006-291x(75)90747-0. [DOI] [PubMed] [Google Scholar]
- Chrisman T. D., Garbers D. L., Parks M. A., Hardman J. G. Characterization of particulate and soluble guanylate cyclases from rat lung. J Biol Chem. 1975 Jan 25;250(2):374–381. [PubMed] [Google Scholar]
- Christophe J. P., Frandsen E. K., Conlon T. P., Krishna G., Gardner J. D. Action of cholecystokinin, cholinergic agents, and A-23187 on accumulation of guanosine 3':5'-monophosphate in dispersed guinea pig pancreatic acinar cells. J Biol Chem. 1976 Aug 10;251(15):4640–4645. [PubMed] [Google Scholar]
- DeRubertis F. R., Craven P. A. Properties of the guanylate cyclase-guanosine 3':5'-monophosphate system of rat renal cortex. Activation of guanylate cyclase and calcium-independent modulation of tissue guanosine 3':5'-monophosphate by sodium azide. J Biol Chem. 1976 Aug 10;251(15):4651–4658. [PubMed] [Google Scholar]
- Frey W. H., 2nd, Boman B. M., Newman D., Goldberg N. D. Manganese- and magnesium-dependent activities of soluble and particulate guanylate cyclase from sheep kidney outer medulla. J Biol Chem. 1977 Jun 25;252(12):4298–4304. [PubMed] [Google Scholar]
- Garbers D. L., Dyer E. L., Hardman J. G. Effects of cations on guanylate cyclase of sea urchin sperm. J Biol Chem. 1975 Jan 25;250(2):382–387. [PubMed] [Google Scholar]
- George W. J., Polson J. B., O'Toole A. G., Goldberg N. D. Elevation of guanosine 3',5'-cyclic phosphate in rat heart after perfusion with acetylcholine. Proc Natl Acad Sci U S A. 1970 Jun;66(2):398–403. doi: 10.1073/pnas.66.2.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glass D. B., Frey W., 2nd, Carr D. W., Goldberg N. D. Stimulation of human platelet guanylate cyclase by fatty acids. J Biol Chem. 1977 Feb 25;252(4):1279–1285. [PubMed] [Google Scholar]
- Goldberg N. D., Haddox M. K. Cyclic GMP metabolism and involvement in biological regulation. Annu Rev Biochem. 1977;46:823–896. doi: 10.1146/annurev.bi.46.070177.004135. [DOI] [PubMed] [Google Scholar]
- Haymovits A., Scheele G. A. Cellular cyclic nucleotides and enzyme secretion in the pancreatic acinar cell. Proc Natl Acad Sci U S A. 1976 Jan;73(1):156–160. doi: 10.1073/pnas.73.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kakiuchi S., Yamazaki R. Calcium dependent phosphodiesterase activity and its activating factor (PAF) from brain studies on cyclic 3',5'-nucleotide phosphodiesterase (3). Biochem Biophys Res Commun. 1970 Dec 9;41(5):1104–1110. doi: 10.1016/0006-291x(70)90199-3. [DOI] [PubMed] [Google Scholar]
- Kimura H., Mittal C. K., Murad F. Activation of guanylate cyclase from rat liver and other tissues by sodium azide. J Biol Chem. 1975 Oct 25;250(20):8016–8022. [PubMed] [Google Scholar]
- Kimura H., Murad F. Evidence for two different forms of guanylate cyclase in rat heart. J Biol Chem. 1974 Nov 10;249(21):6910–6916. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lee T. P., Kuo J. F., Greengard P. Role of muscarinic cholinergic receptors in regulation of guanosine 3':5'-cyclic monophosphate content in mammalian brain, heart muscle, and intestinal smooth muscle. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3287–3291. doi: 10.1073/pnas.69.11.3287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Limbird L. E., Lefkowitz R. J. Myocardial guanylate cyclase: properties of the enzyme and effects of cholinergic agonists in vitro. Biochim Biophys Acta. 1975 Jan 23;377(1):186–196. doi: 10.1016/0005-2744(75)90299-5. [DOI] [PubMed] [Google Scholar]
- Lin Y. M., Liu Y. P., Cheung W. Y. Cyclic 3':5'-nucleotide phosphodiesterase. Purification, characterization, and active form of the protein activator from bovine brain. J Biol Chem. 1974 Aug 10;249(15):4943–4954. [PubMed] [Google Scholar]
- Matsuzawa H., Nirenberg M. Receptor-mediated shifts in cGMP and cAMP levels in neuroblastoma cells. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3472–3476. doi: 10.1073/pnas.72.9.3472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakazawa K., Sano M. Studies on guanylate cyclase. A new assay method for guanylate cyclase and properties of the cyclase from rat brain. J Biol Chem. 1974 Jul 10;249(13):4207–4211. [PubMed] [Google Scholar]
- Nathanson J. A. Cyclic nucleotides and nervous system function. Physiol Rev. 1977 Apr;57(2):157–256. doi: 10.1152/physrev.1977.57.2.157. [DOI] [PubMed] [Google Scholar]
- Olson D. R., Kon C., Breckenridge B. M. Calcium ion effects on guanylate cyclase of brain. Life Sci. 1976 May 1;18(9):935–940. doi: 10.1016/0024-3205(76)90411-2. [DOI] [PubMed] [Google Scholar]
- Richelson E. Antipsychotics block muscarinic acetylcholine receptor-mediated cyclic GMP formation in cultured mouse neuroblastoma cells. Nature. 1977 Mar 24;266(5600):371–373. doi: 10.1038/266371a0. [DOI] [PubMed] [Google Scholar]
- Rodan G. A., Feinstein M. B. Interrelationships between Ca2+ and adenylate and guanylate cyclases in the control of platelet secretion and aggregation. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1829–1833. doi: 10.1073/pnas.73.6.1829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultz G., Hardman J. G., Schultz K., Baird C. E., Sutherland E. W. The importance of calcium ions for the regulation of guanosine 3':5'-cyclic monophosphage levels. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3889–3893. doi: 10.1073/pnas.70.12.3889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steiner A. L., Parker C. W., Kipnis D. M. Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J Biol Chem. 1972 Feb 25;247(4):1106–1113. [PubMed] [Google Scholar]
- Strange P. G., Birdsall N. J., Burgen A. S. Occupancy of muscarinic acetylcholine receptors stimulates a guanylate cyclase in neuroblastoma cells. Biochem Soc Trans. 1977;5(1):189–191. doi: 10.1042/bst0050189. [DOI] [PubMed] [Google Scholar]
- Sulakhe S. J., Leung N. L., Sulakhe P. V. Properties of particulate, membrane-associated and soluble guanylate cyclase from cardiac muscle, skeletal muscle, cerebral cortex and liver. Biochem J. 1976 Sep 1;157(3):713–719. doi: 10.1042/bj1570713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Sande J., Decoster C., Dumont J. E. Control and role of cyclic 3',5'-guanosine monophosphate. Biochem Biophys Res Commun. 1975 Jan 20;62(2):168–175. doi: 10.1016/s0006-291x(75)80119-7. [DOI] [PubMed] [Google Scholar]
- Wallach D., Pastan I. Stimulation of guanylate cyclase of fibroblasts by free fatty acids. J Biol Chem. 1976 Sep 25;251(18):5802–5809. [PubMed] [Google Scholar]
- Yamamura H. I., Snyder S. H. Muscarinic cholinergic binding in rat brain. Proc Natl Acad Sci U S A. 1974 May;71(5):1725–1729. doi: 10.1073/pnas.71.5.1725. [DOI] [PMC free article] [PubMed] [Google Scholar]