Abstract
The effect of several enzymes of the DNA metabolism of Escherichia coli on the biological activity of native and single-stranded T7 DNA was studied by transfection of lysozyme-EDTA spheroplasts prepared from various E. coli mutants. It is shown that the presence of the recBC DNase in the recipient cells decreases the infectivity of native and denatured DNA by about 100- and 10-fold, respectively. Lack of exonuclease I did not stimulate transfection by single-stranded DNA. Separated light (l) and heavy (r) strands of T7 DNA are fully infective, with a linear dependence on DNA concentrations, whereas heat-denatured DNA shows a two-hit kinetics. Single-stranded DNA was observed to depend on a functional DNA polymerase III for infectivity in polAB cells, whereas transfection with native T7 DNA was independent of the host DNA polymerases. The results are discussed with respect to the mode of T7 DNA replication.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benzinger R., Enquist L. W., Skalka A. Transfection of Escherichia coli spheroplasts. V. Activity of recBC nuclease in rec+ and rec minus spheroplasts measured with different forms of bacteriophage DNA. J Virol. 1975 Apr;15(4):861–871. doi: 10.1128/jvi.15.4.861-871.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benzinger R., Kleber I., Huskey R. Transfection of Escherichia coli spheroplasts. I. General facilitation of double-stranded deoxyribonucleic acid infectivity by protamine sulfate. J Virol. 1971 May;7(5):646–650. doi: 10.1128/jvi.7.5.646-650.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berkower I., Leis J., Hurwitz J. Isolation and characterization of an endonuclease from Escherichia coli specific for ribonucleic acid in ribonucleic acid-deoxyribonucleic acid hybrid structures. J Biol Chem. 1973 Sep 10;248(17):5914–5921. [PubMed] [Google Scholar]
- Carter D. M., Radding C. M. The role of exonuclease and beta protein of phage lambda in genetic recombination. II. Substrate specificity and the mode of action of lambda exonuclease. J Biol Chem. 1971 Apr 25;246(8):2502–2512. [PubMed] [Google Scholar]
- Cassuto E., Lash T., Sriprakash K. S., Radding C. M. Role of exonuclease and beta protein of phage lambda in genetic recombination. V. Recombination of lambda DNA in vitro. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1639–1643. doi: 10.1073/pnas.68.7.1639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark A. J. Recombination deficient mutants of E. coli and other bacteria. Annu Rev Genet. 1973;7:67–86. doi: 10.1146/annurev.ge.07.120173.000435. [DOI] [PubMed] [Google Scholar]
- Dressler D., Wolfson J., Magazin M. Initiation and reinitiation of DNA synthesis during replication of bacteriophage T7. Proc Natl Acad Sci U S A. 1972 Apr;69(4):998–1002. doi: 10.1073/pnas.69.4.998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldmark P. J., Linn S. Purification and properties of the recBC DNase of Escherichia coli K-12. J Biol Chem. 1972 Mar 25;247(6):1849–1860. [PubMed] [Google Scholar]
- Henry C. M., Ferdinand F. J., Knippers R. A hydridase from Escherichia coli. Biochem Biophys Res Commun. 1973 Feb 5;50(3):603–611. doi: 10.1016/0006-291x(73)91287-4. [DOI] [PubMed] [Google Scholar]
- Hirota Y., Gefter M., Mindich L. A mutant of Escherichia coli defective in DNA polymerase II activity. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3238–3242. doi: 10.1073/pnas.69.11.3238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hotz G., Mauser R. Infectious DNA from coliphage T1. I. Some properties of the spheroplast assay system. Mol Gen Genet. 1969;104(2):178–194. doi: 10.1007/BF00272800. [DOI] [PubMed] [Google Scholar]
- Hotz G., Mauser R. Infectious DNA from coliphage T1. II. Host-cell reactivation of UV-irradiated molecules. Mol Gen Genet. 1970;108(3):233–242. doi: 10.1007/BF00283353. [DOI] [PubMed] [Google Scholar]
- Howard-Flanders P., Boyce R. P. DNA repair and genetic recombination: studies on mutants of Escherichia coli defective in these processes. Radiat Res. 1966;(Suppl):156+–156+. [PubMed] [Google Scholar]
- Kelly T. J., Jr, Thomas C. A., Jr An intermediate in the replication of bacteriophage T7 DNA molecules. J Mol Biol. 1969 Sep 28;44(3):459–475. doi: 10.1016/0022-2836(69)90373-8. [DOI] [PubMed] [Google Scholar]
- Kornberg T., Gefter M. L. Deoxyribonucleic acid synthesis in cell-free extracts. IV. Purification and catalytic properties of deoxyribonucleic acid polymerase III. J Biol Chem. 1972 Sep 10;247(17):5369–5375. [PubMed] [Google Scholar]
- Kushner S. R., Nagaishi H., Clark A. J. Indirect suppression of recB and recC mutations by exonuclease I deficiency. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1366–1370. doi: 10.1073/pnas.69.6.1366. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEHMAN I. R., NUSSBAUM A. L. THE DEOXYRIBONUCLEASES OF ESCHERICHIA COLI. V. ON THE SPECIFICITY OF EXONUCLEASE I (PHOSPHODIESTERASE). J Biol Chem. 1964 Aug;239:2628–2636. [PubMed] [Google Scholar]
- Lawhorne L., Kleber I., Mitchell C., Benzinger R. Transfection of Escherichia coli spheroplasts. II. Relative infectivity of native, denatured, and renatured lambda, T7, T5, T4, and P22 bacteriophage DNAs. J Virol. 1973 Oct;12(4):733–740. doi: 10.1128/jvi.12.4.733-740.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masker W. E., Richardson C. C. Bacteriophage T7 deoxyribonucleic acid replication in vitro VI. Synthesis of biologically active T7 DNA. J Mol Biol. 1976 Feb 5;100(4):557–567. doi: 10.1016/s0022-2836(76)80045-9. [DOI] [PubMed] [Google Scholar]
- Oishi M., Cosloy S. D. Specialised transformation in Escherichia coli K12. Nature. 1974 Mar 8;248(5444):112–116. doi: 10.1038/248112a0. [DOI] [PubMed] [Google Scholar]
- Oishi M., Cosloy S. D. The genetic and biochemical basis of the transformability of Escherichia coli K12. Biochem Biophys Res Commun. 1972 Dec 18;49(6):1568–1572. doi: 10.1016/0006-291x(72)90520-7. [DOI] [PubMed] [Google Scholar]
- Pilarksi L. M., Egan J. B. Role of DNA topology in transcription of coliphage lambda in vivo. II. DNA topology protects the template from exonuclease attack. J Mol Biol. 1973 May 15;76(2):257–266. doi: 10.1016/0022-2836(73)90389-6. [DOI] [PubMed] [Google Scholar]
- Simmon V. F., Lederberg S. Degradation of bacteriophage lambda deoxyribonucleic acid after restriction by Escherichia coli K-12. J Bacteriol. 1972 Oct;112(1):161–169. doi: 10.1128/jb.112.1.161-169.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Studier F. W. Bacteriophage T7. Science. 1972 Apr 28;176(4033):367–376. doi: 10.1126/science.176.4033.367. [DOI] [PubMed] [Google Scholar]
- Tomilin N. V., Mosevitskaya T. V. Reactivation and induction of c-mutation in UV-irradiated infectious lambda DNA resulting from UV-irradiation of rec+ host cells. Mutat Res. 1973 Dec;20(3):429–432. doi: 10.1016/0027-5107(73)90063-8. [DOI] [PubMed] [Google Scholar]
- Tomilin N. V., Mosevitskaya T. V. Ultraviolet reactivation and ultraviolet mutagenesis of infectious lambda DNA: strong inhibition by treatment of DNA in vitro with UV-endonuclease from Micrococcus luteus. Mutat Res. 1975 Feb;27(2):147–156. doi: 10.1016/0027-5107(75)90074-3. [DOI] [PubMed] [Google Scholar]
- Wackernagel W. An improved spheroplast assay for lambda-DNA and the influence of the bacterial genotype on the transfection rate. Virology. 1972 Apr;48(1):94–103. doi: 10.1016/0042-6822(72)90117-1. [DOI] [PubMed] [Google Scholar]
- Wackernagel W. Genetic transformation in E. coli: the inhibitory role of the recBC DNase. Biochem Biophys Res Commun. 1973 Mar 17;51(2):306–311. doi: 10.1016/0006-291x(73)91257-6. [DOI] [PubMed] [Google Scholar]
- Wackernagel W., Hermanns U. Inhibition of exonuclease V after infection of E. coli by bacteriophage T7. Biochem Biophys Res Commun. 1974 Sep 23;60(2):521–527. doi: 10.1016/0006-291x(74)90271-x. [DOI] [PubMed] [Google Scholar]
- Wackernagel W., Radding C. M. Formation in vitro of infective joint molecules of lambda DNA by T4 gene-32 protein. Proc Natl Acad Sci U S A. 1974 Feb;71(2):431–435. doi: 10.1073/pnas.71.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wackernagel W., Radding C. M. Transfection by half molecules and inverted molecules of lambda DNA: requirement for exo and -promoted recombination. Virology. 1973 Apr;52(2):425–432. doi: 10.1016/0042-6822(73)90337-1. [DOI] [PubMed] [Google Scholar]
- Wackernagel W. UV-sensitivity and UV-mutability of infectious lambdaDNA: reactivation, protection and mutability in various assay systems. Mol Gen Genet. 1974;135(1):61–71. doi: 10.1007/BF00433902. [DOI] [PubMed] [Google Scholar]
- Wackernagel W., Winkler U. A mutation in Escherichia coli enhancing the UV-mutability of phage lambda but not of its infectious DNA in a spheroplast assay. Mol Gen Genet. 1972;114(1):68–79. doi: 10.1007/BF00268748. [DOI] [PubMed] [Google Scholar]
- Watson J. D. Origin of concatemeric T7 DNA. Nat New Biol. 1972 Oct 18;239(94):197–201. doi: 10.1038/newbio239197a0. [DOI] [PubMed] [Google Scholar]
- Wickner W., Schekman R., Geider K., Kornberg A. A new form of DNA polymerase 3 and a copolymerase replicate a long, single-stranded primer-template. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1764–1767. doi: 10.1073/pnas.70.6.1764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkins A. S., Mistry J. Phage lambda's generalized recombination system. Study of the intracellular DNA pool during lytic infection. Mol Gen Genet. 1974 Apr 3;129(4):275–293. doi: 10.1007/BF00265693. [DOI] [PubMed] [Google Scholar]
- Wolfson J., Dressler D., Magazin M. Bacteriophage T7 DNA replication: a linear replicating intermediate (gradient centrifugation-electron microscopy-E. coli-DNA partial denaturation). Proc Natl Acad Sci U S A. 1972 Feb;69(2):499–504. doi: 10.1073/pnas.69.2.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright M., Buttin G., Hurwitz J. The isolation and characterization from Escherichia coli of an adenosine triphosphate-dependent deoxyribonuclease directed by rec B, C genes. J Biol Chem. 1971 Nov;246(21):6543–6555. [PubMed] [Google Scholar]
- Yajko D. M., Valentine M. C., Weiss B. Mutants of Escherichia coli with altered deoxyribonucleases. II. Isolation and characterization of mutants for exonuclease I. J Mol Biol. 1974 May 15;85(2):323–343. doi: 10.1016/0022-2836(74)90367-2. [DOI] [PubMed] [Google Scholar]
