Abstract
目的
探讨孕晚期妇女静脉血与新生儿脐带血血浆维生素A(vitamin A,VitA)水平的相关性。
方法
2009年5月至6月在河北省元氏县和乐亭县募集孕妇688例,采集产前静脉血和新生儿脐带血,采用高效液相色谱法检测血浆视黄醇浓度,用以反映VitA水平。根据产前静脉血血浆视黄醇浓度,孕妇VitA营养状态分为缺乏(<0.70 μmol/L)、边缘性缺乏(0.70~<1.05 μmol/L)、充足(≥1.05 μmol/L)。根据脐带血血浆视黄醇浓度,新生儿VitA营养状态分为缺乏(<0.35 μmol/L)、边缘性缺乏(0.35~<0.70 μmol/L)、充足(≥0.70 μmol/L);将脐带血血浆视黄醇浓度低于第10百分位数定义为新生儿VitA相对缺乏。新生儿与孕妇血浆视黄醇浓度比值定义为VitA胎盘转运系数。采用多元分式多项式(multivariable fractional polynomials,MFP)模型和Pearson相关探讨孕妇与新生儿血浆VitA水平的关系,采用Logistic回归模型探讨孕妇VitA营养状态对新生儿VitA缺乏的影响,采用MFP模型和Spearman相关探讨孕妇VitA水平与胎盘转运系数的关系。
结果
孕晚期妇女视黄醇平均浓度为(1.15±0.30)μmol/L,VitA缺乏率和边缘性缺乏率分别为4.5%和37.8%;新生儿视黄醇平均浓度为(0.78±0.13)μmol/L,无VitA缺乏,边缘性缺乏率为28.2%。调整孕妇年龄、体重指数等因素后,孕妇与新生儿VitA水平间呈线性正向剂量-反应关系(幂参数=1,P<0.05), Pearson相关系数为0.13(P<0.01)。与VitA充足组孕妇相比,缺乏组(crude OR=2.20,95%CI:1.04~4.66)和边缘性缺乏组(crude OR=1.43,95%CI:1.01~2.02)分娩VitA边缘性缺乏新生儿的风险显著升高,但多因素调整后,上述效应不再有统计学意义;VitA缺乏组孕妇分娩VitA相对缺乏新生儿的风险在调整多因素前后均显著增加(crude OR=3.02,95%CI:1.21~7.50;adjusted OR=2.76,95%CI:1.05~7.22)。孕妇VitA水平与VitA胎盘转运系数间呈非线性负向剂量-反应关系(幂参数=-0.5,P<0.05),调整后Spearman相关系数为-0.82(P<0.001)。
结论
孕晚期妇女与新生儿血浆VitA水平呈正向线性剂量-反应关系,提示孕妇VitA营养状态影响新生儿VitA储存水平。
Keywords: 维生素A, 新生儿, 孕妇, 孕晚期
Abstract
Objective
To study the correlation of plasma vitamin A (VitA) levels between neonates and pregnant women in third trimester.
Methods
A total of 688 pregnant women were recruited in Yuanshi and Laoting counties of Hebei Province, from May to June 2009. Venous blood samples of women before delivery and cord blood samples of newborns were collected and measured for retinol (retinol concentration was used to reflect VitA level) using high performance liquid chromatography assay. According to venous blood plasma retinol concentration, maternal VitA nutritional status was divided into deficiency (<0.70 μmol/L), marginal deficiency (0.70-<1.05 μmol/L), and sufficiency (≥1.05 μmol/L). According to cord blood plasma retinol concentration, neonatal VitA nutritional status was divided into deficiency (<0.35 μmol/L), marginal deficiency (0.35-<0.70 μmol/L), and sufficiency (≥0.70 μmol/L); neonatal VitA relative deficiency was further defined as cord blood plasma retinol concentration lower than the 10th percentile. VitA placental transport ratio was defined as retinol concentration in the neonates divided by that in pregnant women. Multivariable fractional polynomials (MFP) model and Pearson correlation were used to study the dose-response relationship between maternal and neonatal plasma VitA levels, Logistic regression model to estimate the effect of maternal VitA nutritional status on neonatal VitA deficiency, and MFP model and Spearman correlation to describe the relationship between maternal VitA level and VitA placental transport ratio.
Results
The average retinol concentration of the pregnant women was (1.15±0.30) μmol/L, and the prevalence of VitA deficiency and marginal deficiency were 4.5% and 37.8%, respectively. Average retinol concentration of the neonates was (0.78±0.13) μmol/L, and no neonates were VitA deficiency, 28.2% of the neonates were marginal deficiency. After multivariable adjustment, the VitA level of the neonates was positively and linearly related to maternal VitA level (pm=1, P<0.05), with the corresponding Pearson correlation coefficient of 0.13 (P<0.01). As compared with the women with sufficient VitA, those with VitA deficiency (crude OR=2.20, 95%CI:1.04-4.66) and marginal deficiency (crude OR=1.43, 95%CI:1.01-2.02) had higher risks to deliver neonates with VitA marginal deficiency; while the risks turned to be non-significant after multivariable adjustment. The pregnant women with VitA deficiency had higher risk to deliver neonates with relative VitA deficiency before and after multivariable adjustment (crude OR=3.02, 95%CI:1.21-7.50; adjusted OR=2.76, 95%CI:1.05-7.22). The maternal VitA level was negatively and non-linearly correlated with placental transport ratio (pm= -0.5, P<0.05), with corresponding adjusted Spearman correlation coefficient of -0.82 (P<0.001).
Conclusion
There was a positive linear dose-response relationship between VitA levels of newborns and pregnant women in third trimester, indicating that neonatal VitA storing levels at birth was affected by maternal VitA nutritional status.
Keywords: Vitamin A, Neonate, Pregnant woman, Third trimester
维生素A(vitamin A,VitA)是人体必需脂溶性维生素,参与胎儿视觉和骨骼发育、免疫系统维持等多种生理功能[1,2]。孕期VitA缺乏可增加胎儿出生体质量降低[3]和骨骼发育不良[4]的发生风险。新生儿VitA营养水平影响体格发育[5]、呼吸系统[6]和神经系统发育[7]及婴儿期死亡风险[8]等。探讨孕晚期VitA水平与新生儿VitA水平的关系对于改善新生儿营养状况,降低不良出生结局具有重要公共卫生和临床意义。既往有小样本研究提示了孕晚期母血与新生儿脐带血VitA水平有相关性[9,10],但未见有定量分析两者之间是否存在剂量-反应关系的研究,也少有定性分析孕妇VitA缺乏对新生儿VitA缺乏影响的研究。此外,脐带血VitA是由母血VitA经胎盘主动转运而来[11],然而胎盘主动转运能力是否受孕妇VitA水平影响也未见报道。
本研究分析了688对孕晚期妇女和新生儿血浆VitA水平,评价两者间的剂量-反应关系,分析孕晚期VitA缺乏对新生儿VitA水平的影响,并探讨母血VitA水平与胎盘转运能力的关联性。
1. 资料与方法
1.1. 研究对象
2009年5月至6月在河北省元氏县和乐亭县募集孕妇,随访观察至分娩。孕妇纳入标准:募集时妊娠<20周,并建立围产保健手册;年龄≥20周岁;本次怀孕为单胎;无生育史;妊娠结局为娩出活产儿;本地长期居住者;生活能够自理且自愿参加本项目。共募集到817例孕妇,排除未采集临产前静脉血或分娩时脐带血样本(n=2)、样本溶血或采集不足(n=120)、基本信息缺失(n=4)、或VitA测定值异常者(n=3),最终纳入分析688对孕妇和新生儿资料。本研究项目经北京大学生物医学伦理委员会审查通过后实施(批准号:IRB00001052-11024)。
1.2. 基本信息收集
由经统一培训的医院产科项目人员收集孕妇及新生儿的基本信息。孕妇信息包括年龄、募集孕周、分娩孕周、职业、文化程度、募集时体重指数和血红蛋白浓度。新生儿信息包括性别、早产、出生体重和出生身长。
1.3. 样本采集与测定
样本采集:采用乙二胺四乙酸(ethylene diamine tetraacetic acid, EDTA)抗凝管采集临产前静脉血和分娩时脐带血5 mL,4 ℃、3 000 r/min离心15 min,分离出血浆并短期储存于-20 ℃冰箱。冷链运输样本至国家卫生健康委员会生育健康重点实验室,于-80 ℃冰箱冻存待测。
样本测定:采用高效液相色谱法(high performance liquid chromatography, HPLC)检测血浆中视黄醇,以视黄醇浓度代表VitA水平。检测所用仪器主要包括高效液相色谱仪(Alliance 2690)、双通道紫外分光检测器(Waters 2489)、C18反向色谱柱(填料HSS T3,5 μm,4.6×150 mm),均购自美国Waters公司。所用试剂包括视黄醇标准液(0.1 g/L,Cerilliant公司,美国)、视黄醇乙酸酯(Sigma公司,美国),其他试剂如色谱纯级别的无水乙醇、甲醇、乙腈等购自美国Fisher公司。检测过程为:在25 μL待测血浆中,加入50 μL视黄醇乙酸酯内标溶液和125 μL乙腈,充分震荡后,25 ℃室温下15 000 r/min离心3 min,吸取80 μL上清液至有盖的自动采样瓶中进样检测。流动相为乙腈 ∶水(85 ∶15),流速1 mL/min,柱温35 ℃,进样温度20 ℃,检测波长325 nm。每20个样本进行一次盲样质控,每轮测定前后放入高、中、低质控。样本处理与检测均在国家卫生健康委员会生育健康重点实验室BSL-2黄光实验室内进行,检测过程严格避光。
1.4. VitA营养状况及相关指标判定
孕妇VitA营养状态判定:采用世界卫生组织的判定标准[12],定义孕妇血浆视黄醇浓度<0.70 μmol/L为缺乏(VitA deficiency,VAD), 0.70~<1.05 μmol/L为边缘性缺乏(marginal VitA deficiency,MVAD),≥1.05 μmol/L为充足。新生儿VitA营养状态判定:由于尚无脐带血VitA分类标准,本研究采用两种方法判定:一是根据标准人群维生素A缺乏筛查方法(WS/T 553—2017)中6岁以下儿童VitA营养状态的判定方法,定义脐带血血浆视黄醇浓度<0.35 μmol/L为VAD,0.35~<0.70 μmol/L为MVAD,≥0.70 μmol/L为充足[13];二是将脐带血血浆视黄醇浓度低于第10百分位数(0.62 μmol/L)定义为新生儿VitA相对缺乏,高者定义为充足。VitA胎盘转运系数(VitA placental transport ratio,VitA-PTR):新生儿与孕妇血浆视黄醇浓度比值[14],作为衡量胎盘主动转运VitA效率的指标。
1.5. 统计学分析
孕妇及新生儿的视黄醇浓度等连续变量采用均数±标准差描述其平均水平,孕妇及新生儿VitA营养状态等分类变量采用频数和百分比描述。采用单因素和多因素Pearson相关探讨孕妇与新生儿血浆VitA水平的相关性,采用多元分式多项式(multivariable fractional polynomials, MFP)模型探讨两者的剂量-反应关系,采用单因素和多因素Logistic回归模型探讨孕妇VitA营养状态对新生儿VitA营养状态的影响。采用MFP模型及单因素和多因素Spearman相关探讨孕妇VitA水平与VitA-PTR的关系。多因素模型中调整的因素包括孕妇年龄、体重指数、贫血状态、地区、职业、文化程度、分娩孕周和新生儿性别。数据分析使用R 3.5.0 统计软件完成,双侧P<0.05为差异有统计学意义。
2. 结果
2.1. 基本情况
孕妇平均年龄为(23.7±3.7)岁,平均分娩孕周为(39.5±1.7)周,职业以农民为主(88.0%),文化程度多为初中及以下 (80.4%)。孕晚期妇女视黄醇平均浓度为(1.15±0.30) μmol/L,VAD率为4.5%(31/688), MVAD率为37.8%(260/688)。新生儿中男性占45.6%,早产儿占 4.2%。新生儿视黄醇平均浓度为(0.78±0.13) μmol/L,约为孕晚期妇女视黄醇浓度的68.0%,无VAD,MVAD率为28.2%(194/688), 详见表1。
1.
孕妇及新生儿的基本特征和血浆VitA水平
Characteristics and plasma VitA levels for pregnant women and newborns
Characteristics | Values |
Pregnant women | |
Retinol concentration /(μmol/L), x±s | 1.15±0.30 |
Age/years, n(%) | |
<25 | 509 (74.0) |
≥25 | 179 (26.0) |
Gestational age at enrollment/weeks, x±s | 11.5±4.7 |
Gestational age at delivery/weeks, x±s | 39.5±1.7 |
County, n(%) | |
Yuanshi | 383 (55.7) |
Laoting | 305 (44.3) |
Ethnicity, n(%) | |
Han | 683 (99.3) |
Other | 5 (0.7) |
Occupation, n(%) | |
Farmer | 606 (88.0) |
Other | 82 (12.0) |
Education, n(%) | |
Middle school or less | 553 (80.4) |
High school | 72 (10.5) |
University or higher | 63 (9.1) |
Body mass index at enrollment/ (kg/m2), n(%) | |
<18.5 | 38 (5.5) |
18.5-23.9 | 483 (70.2) |
>23.9 | 167 (24.3) |
Hemoglobin level/(g/L), n(%) | |
≥110 | 663 (96.4) |
<110 | 25 (3.6) |
Newborns | |
Retinol concentration/(μmol/L), x±s | 0.78±0.13 |
Gender, n(%) | |
Male | 314 (45.6) |
Female | 353 (51.3) |
Missing | 21 (3.1) |
Preterm birth, n(%) | |
Yes (28 weeks≤ gestational age<37 weeks) | 29 (4.2) |
No (gestational age≥37 weeks) | 659 (95.8) |
Birth length/cm, x±s | 50.28±1.02 |
Birth weight/g, x±s | 3 291.5±459.7 |
2.2. 孕晚期妇女和新生儿血浆VitA水平的相关性
孕妇和新生儿VitA水平总体相关系数r=0.14(P<0.001), 孕妇处于VAD状态时二者相关性增强,呈中度相关(r=0.34,P=0.05,表2)。经多因素调整后,总体相关系数变化不大(radj=0.13,P<0.01), VAD孕妇与新生儿VitA水平相关系数进一步增大(radj=0.45,P=0.03)。
2.
孕晚期妇女和新生儿VitA水平Pearson相关分析
Pearson correlation analysis between maternal and neonatal VitA levels
Maternal VitA status | Neonatal retinol concentration/(μmol/L) | ra | P | P | |
a, r denotes Pearson correlation coefficient; b, denotes Pearson correlation coefficient adjusted by multi-variables, including maternal age, body mass index at enrollment, hemoglobin level, county, occupation, education, gestational age at delivery and neonatal gender. VitA, vitamin A. | |||||
VitA deficiency (n=31) | 0.74±0.17 | 0.34 | 0.05 | 0.45 | 0.03 |
Marginal VitA deficiency(n=260) | 0.77±0.13 | 0.11 | 0.06 | 0.11 | 0.10 |
Sufficient (n=397) | 0.78±0.13 | 0.13 | <0.01 | 0.13 | <0.01 |
Total (n=688) | 0.78±0.13 | 0.14 | <0.001 | 0.13 | <0.01 |
调整孕妇年龄等协变量后,孕妇与新生儿血浆VitA水平的MFP拟合模型为一阶MFP,幂参数等于1,模型公式为:FP1=0.71+0.06X,其中X表示孕妇血浆视黄醇浓度(P<0.05),其余变量均未能纳入模型(P>0.05)。
模型提示孕妇与新生儿VitA水平呈正向线性剂量-反应关系(图1),孕妇视黄醇浓度每增加1 μmol/L,新生儿视黄醇浓度相应增加0.06 μmol/L(P<0.001)。
1.
孕妇VitA水平与新生儿VitA水平的剂量-反应关系
The dose-response relationships of maternal VitA level with neonatal VitA level
VitA, vitamin A.
依据6岁以下儿童VitA缺乏的判定标准,与VitA充足组孕妇相比,VAD组(crude OR=2.20,95%CI:1.04~4.66)和MVAD组孕妇(crude OR=1.43,95%CI:1.01~2.02)分娩MVAD新生儿的发生风险显著升高,经多因素调整后,上述效应不具有统计学意义。以新生儿视黄醇浓度的第10百分位数为标准,与VitA充足组孕妇相比,VAD组孕妇分娩VitA相对缺乏新生儿的风险增加(crude OR=
3.02,95%CI:1.21~7.50),多因素调整后该风险仍显著增加(adjusted OR=2.76,95%CI:1.05~7.22);孕妇MVAD组新生儿VitA相对缺乏风险未见显著增加,详见表3。
3.
孕妇VitA营养状态对新生儿VitA缺乏的影响
The effects of maternal VitA nutritional status on neonatal VitA deficiency
Neonatal VitA deficiency | Maternal VitA nutritional status | |||
VitA deficiency | Marginal VitA deficiency | Sufficient | ||
a, marginal VitA deficiency was defined according to method for vitamin A deficiency screening (WS/T 553—2017) for children at or younger than 6 years; b,relative VitA deficiency was defined as values of cord blood plasma retinol concentration below the 10th percentile. VitA, vitamin A. | ||||
Marginal VitA deficiency a | ||||
Crude OR (95%CI) | 2.20 (1.04-4.66) | 1.43 (1.01-2.02) | 1.00 | |
Adjusted OR (95%CI) | 2.14 (0.98-4.65) | 1.45 (0.99-2.12) | 1.00 | |
Relative VitA deficiency b | ||||
Crude OR (95%CI) | 3.02 (1.21-7.50) | 1.15 (0.67-1.96) | 1.00 | |
Adjusted OR (95%CI) | 2.76 (1.05-7.22) | 1.14 (0.64-2.04) | 1.00 |
2.3. 孕晚期妇女VitA水平和VitA-PTR的相关性
单因素(rs=-0.84,P<0.001)和多因素(rsadj=-0.82,P<0.001)Spearman相关分析结果均显示VitA-PTR与孕妇VitA水平呈高度负相关。按孕妇VitA营养状态分层分析发现,在孕妇VitA充足组和MVAD组,VitA-PTR与孕妇VitA水平呈负相关;在孕妇VAD组,两者不再有显著相关性。按新生儿VitA营养状态分层分析发现,无论新生儿处于何种VitA营养状态,孕妇VitA水平与VitA-PTR均存在高度负相关(表4)。
4.
孕晚期妇女VitA水平与VitA-PTR的Spearman相关
Spearman correlation analysis between maternal VitA level and VitA-PTR
Items | P | P | ||
a, rs denotes Spearman correlation coefficient; b, rsadj denotes Spearman correlation coefficient adjusted by multi-variables, including maternal age, body mass index at enrollment, hemoglobin level, county, occupation, education, gestational age at delivery and neonatal gender.; c, first definition method was defined according to method for vitamin A deficiency screening (WS/T 553—2017) for children at or younger than 6 years; d, second definition method was defined as values of cord blood plasma retinol concentration below the 10th percentile. VitA, vitamin A; VitA-PTR, VitA placental transport ratio. | ||||
Maternal VitA nutritional status | ||||
VitA deficiency | -0.08 | 0.65 | -0.03 | 0.91 |
Marginal VitA deficiency | -0.48 | <0.001 | -0.48 | <0.001 |
Sufficient | -0.62 | <0.001 | -0.61 | <0.001 |
Neonatal VitA nutritional status | ||||
First definition methodc | ||||
Marginal VitA deficiency | -0.95 | <0.001 | -0.94 | <0.001 |
Sufficient | -0.91 | <0.001 | -0.90 | <0.001 |
Second definition methodd | ||||
Relative VitA deficiency | -0.95 | <0.001 | -0.94 | <0.001 |
Sufficient | -0.88 | <0.001 | -0.86 | <0.001 |
Total | -0.84 | <0.001 | -0.82 | <0.001 |
MFP模型进一步分析显示,调整孕妇年龄等协变量后,孕妇血浆VitA水平与VitA-PTR的最佳FP拟合模型为一阶FP,幂参数等于-0.5,模型公式为:FP1=-0.59+1.37X-0.5,其中X表示孕妇血浆视黄醇浓度(P<0.05),其余变量均未能纳入模型中(P>0.05)。
模型表明孕妇VitA水平与VitA-PTR呈负向非线性剂量-反应关系(图2),即VitA-PTR随孕妇视黄醇浓度升高而下降,且下降速率逐渐变慢。
2.
孕妇VitA水平与VitA胎盘转运系数的剂量-反应关系
The dose-response relationships of maternal VitA level with VitA placental transport ratio
VitA, vitamin A.
3. 讨论
本研究发现中国北方农村地区孕晚期妇女和新生儿VitA缺乏率低,而边缘性缺乏率较高;孕晚期妇女与新生儿的血浆VitA水平呈正向线性剂量-反应关系,孕晚期VitA缺乏可增加新生儿VitA相对缺乏的发生风险;孕妇血浆VitA水平与胎盘对VitA主动转运能力呈负向非线性剂量-反应关系。
研究显示孕晚期妇女视黄醇平均浓度为(1.15±0.30) μmol/L,VitA缺乏率近5%,边缘缺乏率高达38%;新生儿脐带血视黄醇平均浓度为(0.78±0.13) μmol/L,无VitA缺乏,边缘缺乏率高达28%。胡贻椿等[15]研究显示中国农村孕妇视黄醇浓度为1.53 μmol/L,略高于本研究结果,这可能与两项研究中孕妇所处妊娠阶段不同有关。本研究孕妇处于孕晚期,因孕妇血容量增大、胎儿VitA需求增加等原因,孕妇体内VitA水平降低[16]。本研究新生儿脐血血浆视黄醇浓度占孕妇静脉血血浆视黄醇浓度的68%,与既往报道的50%~70%一致[9, 17-18]。
研究显示孕晚期妇女静脉血血浆与新生儿脐带血血浆VitA水平呈正向线性剂量-反应关系(radj=0.13,P<0.01),孕妇VitA缺乏状态时相关性增强(radj=0.45,P=0.03)。国内外研究也证实孕妇和新生儿VitA水平存在弱但显著的正相关关系(r2=0.27,P<0.001)[9, 19],与本研究结果相似,另有研究显示二者之间存在着正相关趋势(r=0.15,P=0.06)[20]。在既往研究结果基础上,本研究进一步利用MFP模型明确了孕晚期母血与新生儿脐带血VitA水平间存在正向线性剂量-反应关系,为今后通过孕妇VitA水平预测新生儿VitA营养状况提供了模型支持。目前仅有一项研究报道了母亲VitA缺乏可增加新生儿VitA缺乏的发生风险(OR=4.79,95%CI:2.40~9.57)[18],但该研究中孕妇与新生儿采用相同的VitA缺乏标准(VAD定义为血清视黄醇浓度<1.05 μmol/L)。本研究以脐带血视黄醇浓度的第10百分位数为标准定义新生儿VitA相对缺乏,发现与VitA充足组孕妇相比,缺乏组孕妇分娩VitA相对缺乏新生儿的风险升高;而按人群维生素A缺乏筛查方法(WS/T 553—2017)中6岁以下儿童VitA营养状况判定标准,缺乏组孕妇分娩VitA边缘缺乏新生儿的风险未见显著增高。两种判定标准所得结果不完全相同,可能与样本量有关,也可能因母体VitA缺乏可使新生儿VitA处于较低水平,如判定新生儿VitA相对缺乏所用的脐带血视黄醇浓度第10百分位数为0.62 μmol/L,低于新生儿VitA边缘缺乏判定界值0.70 μmol/L,这部分结果也提示有必要探索评价新生儿VitA营养状态的适宜标准。
孕妇血液中的视黄醇以视黄醇-视黄醇结合蛋白的形式透过胎盘转运至胎儿[11]。本研究发现VitA-PTR与孕晚期妇女血浆VitA水平呈非线性负相关关系(rsadj= -0.82,P<0.001),即当母血视黄醇处于相对高浓度时,胎盘对视黄醇的转运效率降低,而当母血视黄醇处于相对低浓度时,胎盘对视黄醇的转运效率增加,以保持胎儿体内VitA水平相对稳定。此外,VitA-PTR与母血VitA水平的相关系数随脐带血VitA营养状态不同而发生变化,提示胎盘转运能力可能受到母体与子代VitA水平的双调控。动物实验发现胎盘既能将母体视黄醇转运给胎儿,亦能使胎儿视黄醇通过胎盘分泌进入母体循环[21]。胎盘VitA转运能力受母子双向调节利于维持胎儿体内VitA水平相对稳定,以保障其正常生长发育。VitA-PTR仅体现胎盘转运效率,有必要进一步收集胎盘标本并辅以动物实验,明确VitA胎盘转运和双向调控的具体机制。
本研究定量分析了孕晚期妇女和新生儿血浆VitA水平的剂量-反应关系,定性分析了孕妇VitA营养状态对新生儿VitA缺乏的影响,并探讨了胎盘转运效率在其中的可能机制,为相关后续研究和政策制定提供了数据支撑。本研究也有不足之处,样本储存时间略长,尽管在-80 ℃储存条件下,视黄醇至少在5年内保持相对稳定[22],但不排除少量视黄醇分解的可能性。若母血和脐带血视黄醇等量分解,则不会实质影响本研究的主要结果。
Funding Statement
国家科技部重点研发计划(2016YFC1000401); 国家自然科学基金(81801542)
Grants of the National Key Research and Development Program of China(2016YFC1000401); National Natural Science Foundation of China(81801542)
Contributor Information
周 玉博 (Yu-bo ZHOU), Email: zhouyubo@bjmu.edu.cn.
刘 建蒙 (Jian-meng LIU), Email: liujm@pku.edu.cn.
References
- 1.Murguia-Peniche T. Vitamin D, vitamin A. maternal-perinatal considerations: old concepts, new insights, new questions. J Pediatr. 2013;162(Suppl 3):26–30. doi: 10.1016/j.jpeds.2012.11.050. [DOI] [PubMed] [Google Scholar]
- 2.Ahmad SM, Alam MJ, Afsana K, et al. Vitamin A supplementation during pregnancy enhances pandemic H1N1 vaccine response in mothers, but enhancement of transplacental antibody transfer may depend on when mothers are vaccinated during pregnancy. J Nutr. 2018;148(12):1968–1975. doi: 10.1093/jn/nxy228. [DOI] [PubMed] [Google Scholar]
- 3.Neves PAR, Castro MC, Oliveira CVR, et al. Effect of vitamin A status during pregnancy on maternal anemia and newborn birth weight: results from a cohort study in the Western Brazilian Amazon. Eur J Nutr. 2018;59(1):45–56. doi: 10.1007/s00394-018-1880-1. [DOI] [PubMed] [Google Scholar]
- 4.Handel MN, Moon RJ, Titcombe P, et al. Maternal serum retinol and beta-carotene concentrations and neonatal bone mineralization: results from the Southampton women’s survey cohort. Am J Clin Nutr. 2016;104(4):1183–1188. doi: 10.3945/ajcn.116.130146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Hanson C, Lyden E, Anderson-Berry A, et al. Status of retinoids and carotenoids and associations with clinical outcomes in maternal-infant pairs in Nigeria. Nutrients. 2018;10(9):1286. doi: 10.3390/nu10091286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.黄 娜, 刘 颖. 维生素A与呼吸系统疾病关系的研究进展. 国际儿科学杂志. 2019;46(7):512–515. [Google Scholar]
- 7.Ali H, Hamadani J, Mehra S, et al. Effect of maternal antenatal and newborn supplementation with vitamin A on cognitive development of school-aged children in rural Bangladesh: a follow-up of a placebo-controlled, randomized trial. Am J Clin Nutr. 2017;106(1):77–87. doi: 10.3945/ajcn.116.134478. [DOI] [PubMed] [Google Scholar]
- 8.West KP, Sommer A. Neonatal vitamin A: time to move on? Lancet. 2015;386(9989):131–132. doi: 10.1016/S0140-6736(15)61234-X. [DOI] [PubMed] [Google Scholar]
- 9.刘 欢, 苗 静琨, 余 林超, et al. 新生儿与母亲孕晚期维生素A水平的相关研究. 重庆医科大学学报. 2018;(6):818–823. [Google Scholar]
- 10.Ramalho RA, dos Anjos LA, Flores H. Nutritional status of vitamin A in mother/newborn pairs from 2 hospital nurseries in Rio de Janeiro, Brazil. Arch Latinoam Nutr. 1999;49(4):318–321. [PubMed] [Google Scholar]
- 11.Wassef L, Quadro L. Uptake of dietary retinoids at the maternal-fetal barrier: in vivo evidence for the role of lipoprotein lipase and alternative pathways. J Biol Chem. 2011;286(37):32198–32207. doi: 10.1074/jbc.M111.253070. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.World Health Organization. Global prevalence of vitamin A deficiency in populations at risk 1995—2005: WHO global database on vitamin A deficiency[R]. Geneva: WHO, 2005.
- 13.中国疾病预防控制中心营养与健康所. 人群维生素A缺乏筛查方法: WS/T 553—2017[S/OL]. 北京: 中华人民共和国国家卫生和计划生育委员会, 2017, 8 (2017-08-01)[2020-02-20]. http://www.nhc.gov.cn/wjw/yingyang/201708/da44da0299504b9da360b4da7ebeb2a6.shtml.
- 14.Berggren SM, Fex GA, Nilsson-Ehle P. Concentrations of reti-noids in early pregnancy and in newborns and their mothers. Am J Clin Nutr. 2005;81(3):633–636. doi: 10.1093/ajcn/81.3.633. [DOI] [PubMed] [Google Scholar]
- 15.胡 贻椿, 李 敏, 陈 竞, et al. 2010—2012年中国农村孕妇贫血及维生素A、维生素D营养状况. 卫生研究. 2017;46(3):361–366, 372. [PubMed] [Google Scholar]
- 16.Mills JP, Terasawa E, Tanumihardjo SA. Ingestion of excessive preformed vitamin A by mothers amplifies storage of retinyl esters in early fetal livers of captive old world monkeys. Comp Med. 2007;57(5):505–511. [PubMed] [Google Scholar]
- 17.Godel JC, Basil TK, Pabst HF, et al. Perinatal vitamin A (retinol) status of northern Canadian mothers and their infants. Neonatology. 1996;69(3):133–139. doi: 10.1159/000244288. [DOI] [PubMed] [Google Scholar]
- 18.Gomes MM, Saunders C, Ramalho A, et al. Serum vitamin A in mothers and newborns in the city of Rio de Janeiro. Int J Food Sci Nutr. 2009;60(4):282–292. doi: 10.1080/09637480701752210. [DOI] [PubMed] [Google Scholar]
- 19.Agarwal K, Dabke AT, Phuljhele NL, et al. Factors affecting serum vitamin A levels in matched maternal-cord pairs. Indian J Pediatr. 2008;75(5):443–446. doi: 10.1007/s12098-008-0070-1. [DOI] [PubMed] [Google Scholar]
- 20.Hanson C, Schumacher M, Lyden E, et al. Status of vitamin A and related compounds and clinical outcomes in maternal-infant pairs in the Midwestern United States. Ann Nutr Metab. 2017;71(3/4):175–182. doi: 10.1159/000481292. [DOI] [PubMed] [Google Scholar]
- 21.Ismadi SD, Olson JA. Dynamics of the fetal distribution and transfer of vitamin A between rat fetuses and their mother. Int J Vitam Nutr Res. 1982;52(2):112–119. [PubMed] [Google Scholar]
- 22.Inorganic Toxicology and Nutrition Branch Division of Laboratory Sciences National Center for Environmental Health, The Centers for Disease Control and Prevention. Fat soluble micronutrients (vitamins A, E and carotenoids) UV-visible detection[EB/OL]. (2005-06-01) [2020-02-20]. https://wwwcdcgov/nchs/data/nhanes/nhanes_05_06/vitaec_d_met_aecarpdf.