Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1988 Nov;74(2):216–222.

Stimulation of mucosal T cells in situ with anti-CD3 antibody: location of the activated T cells and their distribution within the mucosal micro-environment.

T Monk 1, J Spencer 1, N Cerf-Bensussan 1, T T MacDonald 1
PMCID: PMC1541797  PMID: 3265655

Abstract

Mucosal T cells in explants of human fetal small intestine (17-20 weeks gestation) in organ culture were activated in situ using monoclonal anti-CD3 antibody. Changes in the distribution of T cells within the mucosa, and their phenotype, were monitored by immunohistochemistry on frozen sections. Anti-CD3 stimulated T cells (as determined by expression of CD25) were predominantly in the lamina propria and were rarely seen in the epithelium. In control cultures, after 72 h, CD3+ IEL decreased to low numbers compared to day zero. However, in cultures treated with anti-CD3, IEL numbers were maintained and in some experiments significantly increased compared to day zero levels. At onset of culture 50-60% of CD3+ IEL were CD4-, 8-, and virtually all were HML-1+. The T cell infiltrate into the epithelium induced by activation of lamina propria T cells with anti-CD3 was also mostly CD3+, 4-, 8-, HML-1+. These experiments provide strong evidence that increases in IEL numbers can be a consequence of lamina propria T cell activation.

Full text

PDF
216

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRIDGES R. A., CONDIE R. M., ZAK S. J., GOOD R. A. The morphologic basis of antibody formation development during the neonatal period. J Lab Clin Med. 1959 Mar;53(3):331–357. [PubMed] [Google Scholar]
  2. Cerf-Bensussan N., Jarry A., Brousse N., Lisowska-Grospierre B., Guy-Grand D., Griscelli C. A monoclonal antibody (HML-1) defining a novel membrane molecule present on human intestinal lymphocytes. Eur J Immunol. 1987 Sep;17(9):1279–1285. doi: 10.1002/eji.1830170910. [DOI] [PubMed] [Google Scholar]
  3. Ceuppens J. L., Meurs L., Van Wauwe J. P. Failure of OKT3 monoclonal antibody to induce lymphocyte mitogenesis: a familial defect in monocyte helper function. J Immunol. 1985 Mar;134(3):1498–1502. [PubMed] [Google Scholar]
  4. Crabbé P. A., Nash D. R., Bazin H., Eyssen H., Heremans J. F. Immunohistochemical observations on lymphoid tissues from conventional and germ-free mice. Lab Invest. 1970 May;22(5):448–457. [PubMed] [Google Scholar]
  5. Ferguson A. Intraepithelial lymphocytes of the small intestine. Gut. 1977 Nov;18(11):921–937. doi: 10.1136/gut.18.11.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ferguson A., Murray D. Quantitation of intraepithelial lymphocytes in human jejunum. Gut. 1971 Dec;12(12):988–994. doi: 10.1136/gut.12.12.988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ferguson A., Parrott D. M. The effect of antigen deprivation on thymus-dependent and thymus-independent lymphocytes in the small intestine of the mouse. Clin Exp Immunol. 1972 Dec;12(4):477–488. [PMC free article] [PubMed] [Google Scholar]
  8. Hancock W. W., Muller W. A., Cotran R. S. Interleukin 2 receptors are expressed by alveolar macrophages during pulmonary sarcoidosis and are inducible by lymphokine treatment of normal human lung macrophages, blood monocytes, and monocyte cell lines. J Immunol. 1987 Jan 1;138(1):185–191. [PubMed] [Google Scholar]
  9. Holter W., Goldman C. K., Casabo L., Nelson D. L., Greene W. C., Waldmann T. A. Expression of functional IL 2 receptors by lipopolysaccharide and interferon-gamma stimulated human monocytes. J Immunol. 1987 May 1;138(9):2917–2922. [PubMed] [Google Scholar]
  10. Janossy G., Tidman N., Selby W. S., Thomas J. A., Granger S., Kung P. C., Goldstein G. Human T lymphocytes of inducer and suppressor type occupy different microenvironments. Nature. 1980 Nov 6;288(5786):81–84. doi: 10.1038/288081a0. [DOI] [PubMed] [Google Scholar]
  11. Lanier L. L., Federspiel N. A., Ruitenberg J. J., Phillips J. H., Allison J. P., Littman D., Weiss A. The T cell antigen receptor complex expressed on normal peripheral blood CD4-, CD8- T lymphocytes. A CD3-associated disulfide-linked gamma chain heterodimer. J Exp Med. 1987 Apr 1;165(4):1076–1094. doi: 10.1084/jem.165.4.1076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MacDonald T. T., Ferguson A. Small intestinal epithelial cell kinetics and protozoal infection in mice. Gastroenterology. 1978 Mar;74(3):496–500. [PubMed] [Google Scholar]
  13. MacDonald T. T., Spencer J. Evidence that activated mucosal T cells play a role in the pathogenesis of enteropathy in human small intestine. J Exp Med. 1988 Apr 1;167(4):1341–1349. doi: 10.1084/jem.167.4.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mathan M., Mathan V. I., Baker S. J. An electron-microscopic study of jejunal mucosal morphology in control subjects and in patients with tropical sprue in southern India. Gastroenterology. 1975 Jan;68(1):17–32. [PubMed] [Google Scholar]
  15. Phillips A. D., Rice S. J., France N. E., Walker-Smith J. A. Small intestinal intraepithelial lymphocyte levels in cow's milk protein intolerance. Gut. 1979 Jun;20(6):509–512. doi: 10.1136/gut.20.6.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Spencer J., Dillon S. B., Isaacson P. G., MacDonald T. T. T cell subclasses in fetal human ileum. Clin Exp Immunol. 1986 Sep;65(3):553–558. [PMC free article] [PubMed] [Google Scholar]
  17. Spencer J., MacDonald T. T., Isaacson P. G. Heterogeneity of non-lymphoid cells expressing HLA-D region antigens in human fetal gut. Clin Exp Immunol. 1987 Feb;67(2):415–424. [PMC free article] [PubMed] [Google Scholar]
  18. Van Wauwe J. P., De Mey J. R., Goossens J. G. OKT3: a monoclonal anti-human T lymphocyte antibody with potent mitogenic properties. J Immunol. 1980 Jun;124(6):2708–2713. [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES