Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Jan 1;249(1):179–184. doi: 10.1042/bj2490179

Sodium-gradient-driven, high-affinity, uphill transport of succinate in human placental brush-border membrane vesicles.

V Ganapathy 1, M E Ganapathy 1, C Tiruppathi 1, Y Miyamoto 1, V B Mahesh 1, F H Leibach 1
PMCID: PMC1148682  PMID: 3342005

Abstract

Brush-border membrane vesicles isolated from normal human term placentas were shown to accumulate succinate transiently against a concentration gradient, when an inward-directed Na+ gradient was imposed across the membrane. This uptake was almost totally due to transport into intravesicular space, non-specific binding to the membranes being negligible. The dependence of the initial uptake rate of succinate on Na+ concentration exhibited sigmoidal kinetics, indicating interaction of more than one Na+ ion with the carrier system. The Hill coefficient for this ion was calculated to be 2.7. The Na+-dependent uptake of succinate was electrogenic, resulting in the transfer of positive charge across the membrane. Kinetic analysis showed that succinate uptake in these vesicles occurred via a single transport system, with an apparent affinity constant of 4.8 +/- 0.2 microM and a maximal velocity of 274 +/- 4 pmol/20 s per mg of protein. Uptake of succinate was strongly inhibited by various C4 or C5 dicarboxylic acids, whereas monocarboxylic acids, amino acids and glucose showed little or no effect. Li+ and K+ could not substitute for Na+ in the uptake process. Instead, Li+ was found to have a significant inhibitory effect on the Na+-dependent uptake of succinate.

Full text

PDF
179

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balkovetz D. F., Leibach F. H., Mahesh V. B., Devoe L. D., Cragoe E. J., Jr, Ganapathy V. Na+-H+ exchanger of human placental brush-border membrane: identification and characterization. Am J Physiol. 1986 Dec;251(6 Pt 1):C852–C860. doi: 10.1152/ajpcell.1986.251.6.C852. [DOI] [PubMed] [Google Scholar]
  2. Bissonnette J. M. Review article: membrane vesicles from trophoblast cells as models for placental exchange studies. Placenta. 1982 Jan-Mar;3(1):99–106. doi: 10.1016/s0143-4004(82)80023-4. [DOI] [PubMed] [Google Scholar]
  3. Browne J. L., Sanford P. A., Smyth D. H. Transfer and metabolism of citrate, succinate, alpha-ketoglutarate and pyruvate by hamster small intestine. Proc R Soc Lond B Biol Sci. 1978 Feb 23;200(1139):117–135. doi: 10.1098/rspb.1978.0010. [DOI] [PubMed] [Google Scholar]
  4. Brunette M. G., Allard S. Phosphate uptake by syncytial brush border membranes of human placenta. Pediatr Res. 1985 Nov;19(11):1179–1182. doi: 10.1203/00006450-198511000-00013. [DOI] [PubMed] [Google Scholar]
  5. Burckhardt G. Sodium-dependent dicarboxylate transport in rat renal basolateral membrane vesicles. Pflugers Arch. 1984 Jul;401(3):254–261. doi: 10.1007/BF00582592. [DOI] [PubMed] [Google Scholar]
  6. Cole D. E. Sulfate transport in brush border membrane vesicles prepared from human placental syncytiotrophoblast. Biochem Biophys Res Commun. 1984 Aug 30;123(1):223–229. doi: 10.1016/0006-291x(84)90402-9. [DOI] [PubMed] [Google Scholar]
  7. Friedman P. A., Shia M. A., Wallace J. K. A saturable high affinity binding site for transcobalamin II-vitamin B12 complexes in human placental membrane preparations. J Clin Invest. 1977 Jan;59(1):51–58. doi: 10.1172/JCI108621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fritzsch G., Haase W., Rumrich G., Fasold H., Ullrich K. J. A stopped flow capillary perfusion method to evaluate contraluminal transport parameters of methylsuccinate from interstitium into renal proximal tubular cells. Pflugers Arch. 1984 Mar;400(3):250–256. doi: 10.1007/BF00581555. [DOI] [PubMed] [Google Scholar]
  9. Fukuhara Y., Turner R. J. Sodium-dependent succinate transport in renal outer cortical brush border membrane vesicles. Am J Physiol. 1983 Sep;245(3):F374–F381. doi: 10.1152/ajprenal.1983.245.3.F374. [DOI] [PubMed] [Google Scholar]
  10. Ganapathy M. E., Leibach F. H., Mahesh V. B., Howard J. C., Devoe L. D., Ganapathy V. Characterization of tryptophan transport in human placental brush-border membrane vesicles. Biochem J. 1986 Aug 15;238(1):201–208. doi: 10.1042/bj2380201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ganapathy M. E., Mahesh V. B., Devoe L. D., Leibach F. H., Ganapathy V. Dipeptide transport in brush-border membrane vesicles isolated from normal term human placenta. Am J Obstet Gynecol. 1985 Sep 1;153(1):83–86. doi: 10.1016/0002-9378(85)90600-3. [DOI] [PubMed] [Google Scholar]
  12. Ganapathy V., Mendicino J. F., Leibach F. H. Transport of glycyl-L-proline into intestinal and renal brush border vesicles from rabbit. J Biol Chem. 1981 Jan 10;256(1):118–124. [PubMed] [Google Scholar]
  13. Green T., Ford H. C. Human placental microvilli contain high-affinity binding sites for folate. Biochem J. 1984 Feb 15;218(1):75–80. doi: 10.1042/bj2180075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HODGKINSON A. The relation between citric acid and calcium metabolism with particular reference to primary hyper-parathyroidism and idiopathic hypercalciuria. Clin Sci. 1963 Apr;24:167–178. [PubMed] [Google Scholar]
  15. Ingermann R. L., Bissonnette J. M., Koch P. L. D-Glucose-sensitive and -insensitive cytochalasin B binding proteins from microvillous plasma membranes of human placenta. Identification of the D-glucose transporter. Biochim Biophys Acta. 1983 Apr 21;730(1):57–63. doi: 10.1016/0005-2736(83)90316-4. [DOI] [PubMed] [Google Scholar]
  16. Ingermann R. L., Stankova L., Bigley R. H. Role of monosaccharide transporter in vitamin C uptake by placental membrane vesicles. Am J Physiol. 1986 Apr;250(4 Pt 1):C637–C641. doi: 10.1152/ajpcell.1986.250.4.C637. [DOI] [PubMed] [Google Scholar]
  17. Johnson L. W., Smith C. H. Monosaccharide transport across microvillous membrane of human placenta. Am J Physiol. 1980 May;238(5):C160–C168. doi: 10.1152/ajpcell.1980.238.5.C160. [DOI] [PubMed] [Google Scholar]
  18. Jørgensen K. E., Kragh-Hansen U., Røigaard-Petersen H., Sheikh M. I. Citrate uptake by basolateral and luminal membrane vesicles from rabbit kidney cortex. Am J Physiol. 1983 Jun;244(6):F686–F695. doi: 10.1152/ajprenal.1983.244.6.F686. [DOI] [PubMed] [Google Scholar]
  19. KREBS H. A. Chemical composition of blood plasma and serum. Annu Rev Biochem. 1950;19:409–430. doi: 10.1146/annurev.bi.19.070150.002205. [DOI] [PubMed] [Google Scholar]
  20. Kippen I., Hirayama B., Klinenberg J. R., Wright E. M. Transport of tricarboxylic acid cycle intermediates by membrane vesicles from renal brush border. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3397–3400. doi: 10.1073/pnas.76.7.3397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kragh-Hansen U., Jørgensen K. E., Sheikh M. I. The use of a potential-sensitive cyanine dye for studying ion-dependent electrogenic renal transport of organic solutes. Uptake of L-malate and D-malate by luminal-membrane vesicles. Biochem J. 1982 Nov 15;208(2):369–376. doi: 10.1042/bj2080369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kragh-Hansen U., Jørgensen K. E., Sheikh M. I. The use of potential-sensitive cyanine dye for studying ion-dependent electrogenic renal transport of organic solutes. Spectrophotometric measurements. Biochem J. 1982 Nov 15;208(2):359–368. doi: 10.1042/bj2080359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Krebs H. A. Micro-determination of alpha-ketoglutaric acid. Biochem J. 1938 Jan;32(1):108–112. doi: 10.1042/bj0320108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nord E., Wright S. H., Kippen I., Wright E. M. Pathways for carboxylic acid transport by rabbit renal brush border membrane vesicles. Am J Physiol. 1982 Nov;243(5):F456–F462. doi: 10.1152/ajprenal.1982.243.5.F456. [DOI] [PubMed] [Google Scholar]
  25. Schell R. E., Stevens B. R., Wright E. M. Kinetics of sodium-dependent solute transport by rabbit renal and jejunal brush-border vesicles using a fluorescent dye. J Physiol. 1983 Feb;335:307–318. doi: 10.1113/jphysiol.1983.sp014535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schell R. E., Wright E. M. Electrophysiology of succinate transport across rabbit renal brush border membranes. J Physiol. 1985 Mar;360:95–104. doi: 10.1113/jphysiol.1985.sp015605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Seligman P. A., Schleicher R. B., Allen R. H. Isolation and characterization of the transferrin receptor from human placenta. J Biol Chem. 1979 Oct 25;254(20):9943–9946. [PubMed] [Google Scholar]
  28. Sheikh M. I., Kragh-Hansen U., Jørgensen K. E., Røigaard-Petersen H. An efficient method for the isolation and separation of basolateral-membrane and luminal-membrane vesicles from rabbit kidney cortex. Biochem J. 1982 Nov 15;208(2):377–382. doi: 10.1042/bj2080377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Shennan D. B., Davis B., Boyd C. A. Chloride transport in human placental microvillus membrane vesicles. I. Evidence for anion exchange. Pflugers Arch. 1986 Jan;406(1):60–64. doi: 10.1007/BF00582954. [DOI] [PubMed] [Google Scholar]
  30. Stevens B. R., Wright S. H., Hirayama B. S., Gunther R. D., Ross H. J., Harms V., Nord E., Kippen I., Wright E. M. Organic and inorganic solute transport in renal and intestinal membrane vesicles preserved in liquid nitrogen. Membr Biochem. 1982;4(4):271–282. doi: 10.3109/09687688209065436. [DOI] [PubMed] [Google Scholar]
  31. Ullrich K. J., Fasold H., Rumrich G., Klöss S. Secretion and contraluminal uptake of dicarboxylic acids in the proximal convolution of rat kidney. Pflugers Arch. 1984 Mar;400(3):241–249. doi: 10.1007/BF00581554. [DOI] [PubMed] [Google Scholar]
  32. Ullrich K. J., Rumrich G., Fritzsch G., Klöss S. Contraluminal para-aminohippurate (PAH) transport in the proximal tubule of the rat kidney. II. Specificity: aliphatic dicarboxylic acids. Pflugers Arch. 1987 Jan;408(1):38–45. doi: 10.1007/BF00581838. [DOI] [PubMed] [Google Scholar]
  33. Wada H. G., Hass P. E., Sussman H. H. Transferrin receptor in human placental brush border membranes. Studies on the binding of transferrin to placental membrane vesicles and the identification of a placental brush border glycoprotein with high affinity for transferrin. J Biol Chem. 1979 Dec 25;254(24):12629–12635. [PubMed] [Google Scholar]
  34. Wright E. M. Transport of carboxylic acids by renal membrane vesicles. Annu Rev Physiol. 1985;47:127–141. doi: 10.1146/annurev.ph.47.030185.001015. [DOI] [PubMed] [Google Scholar]
  35. Wright E. M., Wright S. H., Hirayama B., Kippen I. Interactions between lithium and renal transport of Krebs cycle intermediates. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7514–7517. doi: 10.1073/pnas.79.23.7514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wright S. H., Hirayama B., Kaunitz J. D., Kippen I., Wright E. M. Kinetics of sodium succinate cotransport across renal brush-border membranes. J Biol Chem. 1983 May 10;258(9):5456–5462. [PubMed] [Google Scholar]
  37. Wright S. H., Kippen I., Klinenberg J. R., Wright E. M. Specificity of the transport system for tricarboxylic acid cycle intermediates in renal brush borders. J Membr Biol. 1980 Nov 15;57(1):73–82. doi: 10.1007/BF01868987. [DOI] [PubMed] [Google Scholar]
  38. Wright S. H., Kippen I., Wright E. M. Stoichiometry of Na+-succinate cotransport in renal brush-border membranes. J Biol Chem. 1982 Feb 25;257(4):1773–1778. [PubMed] [Google Scholar]
  39. Wright S. H., Krasne S., Kippen I., Wright E. M. Na+-dependent transport of tricarboxylic acid cycle intermediates by renal brush border membranes. Effects on fluorescence of a potential-sensitive cyanine dye. Biochim Biophys Acta. 1981 Feb 6;640(3):767–778. doi: 10.1016/0005-2736(81)90107-3. [DOI] [PubMed] [Google Scholar]
  40. Yudilevich D. L., Sweiry J. H. Transport of amino acids in the placenta. Biochim Biophys Acta. 1985 Sep 9;822(2):169–201. doi: 10.1016/0304-4157(85)90007-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES