Skip to main content
Chinese Journal of Reparative and Reconstructive Surgery logoLink to Chinese Journal of Reparative and Reconstructive Surgery
. 2021 Jan;35(1):124–129. [Article in Chinese] doi: 10.7507/1002-1892.202006068

膝关节置换术后骨密度变化的研究进展

Progress of change in bone mineral density after knee arthroplasty

文兴 魏 1, 元刚 吴 1, 羿 曾 1, 彬 沈 1,*
PMCID: PMC8171598  PMID: 33448210

Abstract

目的

总结膝关节置换术后骨密度的变化及其诊断方式、影响因素和药物防治研究进展。

方法

查阅近年国内外有关文献,对骨密度评估测量方式的优缺点、膝关节置换术后骨密度的变化趋势及其影响因素,以及药物防治疗效差异进行总结。

结果

膝关节置换术后全身骨密度及假体周围平均骨密度总体呈下降趋势,与检测时患者体位、年龄、体质量、日常活动、假体固定方式、假体设计以及假体材料等因素密切相关。狄诺塞麦、双膦酸盐和特立帕肽等药物能够减少膝关节置换术后骨密度降低程度。

结论

膝关节置换术后骨密度呈下降趋势,但发生机制尚不明确,与多种因素相关。目前,抑制骨吸收药物对于膝关节置换术后骨密度降低有一定效果,但远期疗效有待进一步探究。

Keywords: 膝关节单髁置换术, 人工全膝关节置换术, 骨密度, 骨丢失


膝关节骨关节炎又称为膝关节退行性关节病,是典型的关节软骨磨损和缺失的结果。常见临床症状包括膝关节疼痛、僵硬和肿胀等,具有起病缓慢、活动时加重以及疼痛随时间推移而逐渐加重等特点[1]。膝关节置换术是目前治疗严重膝关节骨关节炎、类风湿性关节炎等膝关节疾病最常见且行之有效的方法,常见术式包括人工全膝关节置换术(total knee arthroplasty,TKA)和膝关节单髁置换术(unicompartmental knee arthroplasty,UKA)。文献报道 TKA 和 UKA 术后具有较高的中长期生存率[2-4]

骨质疏松或假体周围骨丢失造成的假体松动、假体周围骨折,仍是导致假体失败的主要原因及翻修手术最常见指征[5]。骨密度变化常被认为是骨重建过程的反映,同时也是衡量骨强度和质量的指标之一。因此,骨密度改变与膝关节置换术预后密切相关。Levitz 等[6]研究报道 TKA 术后 2 年胫骨近端骨密度下降 5%~12%,5 年下降 26%,8 年下降 36.4%。鉴于膝关节置换术后假体周围骨丢失造成的严重并发症、大额治疗费用,以及假体周围骨密度变化对防治膝关节置换术后并发症的价值,本文将对膝关节置换术后骨密度变化相关问题进行综述。

1. 骨密度的评估方法

X 线片中胫骨假体周围骨水泥-骨界面出现透亮线常被作为假体松动的特征。但这种主观性较强的视觉分析并不能对骨丢失进行量化,即使对 X 线片图像进行定量灰度值分析,其结果也不可靠,精度较差[7]。目前对于骨质量、骨密度的评估方式有多种,包括双能 X 射线吸收测定法(dual-energy X-ray absorptiometry,DEXA)、定量计算机断层扫描(quantitative computed tomography,QCT)和高分辨率外周定量计算机断层扫描(high-resolution peripheral quantitative computed tomography,HR-pQCT)等[8-10]

1.1. DEXA

DEXA 使用 2 个 X 射线束通过减去软组织成分来进行骨密度和骨量精确定量评估。DEXA 对膝关节和股骨假体周围骨密度的测量误差<4%[11]。Gilchrist 等[11]研究表明,膝关节假体周围各评估区域骨密度的测量误差在 0.55%~4.04%,且假体侧与非假体侧骨密度的测量误差无显著差异。同时,使用 DEXA 对 UKA 假体周围骨密度进行测量,可以评估应力遮挡的特殊区域和潜在的假体稳定性,这也有助于预测假体的生存。虽然 DEXA 具有快速、低成本、低测量误差等优势,但不能提供三维图像,以致不能对骨体积进行评估,也不能区分皮质骨和松质骨[12]。且 DEXA 测量骨密度受患者体型和退行性疾病特征的影响,对于骨架较小者可能会高估其骨折风险,而对于有骨生成增加的退行性疾病患者,测量的骨密度值可能高于实际值[8, 12-13]

1.2. QCT

与 DEXA 类似,QCT 通过旋转 X 射线测量受检者辐射衰减程度,以形成图像[8]。QCT 骨密度评估是基于骨组织体积 HU 值的定量分析,能分别评估皮质骨和松质骨单位体积骨密度值[14-15]。Johnson 等[16]研究发现,HU 值与髋关节、股骨颈及腰椎 DEXA 骨密度测量值和 T 值具有显著相关性。Schreiber 等[14]研究也得出相似结论,并认为 HU 值可以作为骨质疏松的诊断方法之一。此外,QCT 测量 TKA 术后骨密度测量的准确性和可靠性也得到证实[17-18]。但 QCT 也存在辐射剂量高、分辨率低以及不能对骨显微结构成像等局限性;而且存在假体时,金属伪影对测量结果的影响尚待评估,Zannoni 等[19]研究发现全髋关节置换术后股骨假体对 QCT 的测量影响较小。

1.3. HR-pQCT

与 QCT 不同,HR-pQCT 能够获得高分辨率图像,能够显示松质骨和皮质骨的微观结构[12]。HR-pQCT 不仅可以同时计算松质骨、皮质骨骨密度,而且辐射剂量远低于普通 CT 辐射剂量[20]。Burghardt 等[21]研究表明,HR-pQCT 在桡骨远端的骨密度测量值与 DXEA 骨密度测量值相近。此外,HR-pQCT 能对骨微观结构进行无创性评估,在脆性骨折的预测方面具有较大潜力。而 HR-pQCT 分辨率的提高使得测量视野缩小,因此 HR-pQCT 通常仅限于桡骨远端等四肢外周骨骼部位测量,而不能进行股骨颈等传统骨质疏松诊断部位的测量[8]

2. TKA 术后骨密度的变化

TKA 术后腰椎、髋关节等部位的骨密度变化已有很多研究报道。Gazdzik 等[22]报道 TKA 术后 1 年假体周围骨密度较基线值明显降低,主要表现为骨吸收增强以及患者活动能力下降。Kim 等[23]一项随访研究发现在 TKA 术后 1、3 个月,股骨颈、股骨转子和全髋的骨密度均较术前显著降低,但每个时间点各部位骨密度在手术侧和非手术侧均无统计学差异。Hahn 等[24]研究发现,TKA 术后 1 年腰椎骨密度较术前升高,而髋关节骨密度呈下降趋势,但两者与术前比较差异无统计学意义。Bernatz 等[25]研究发现 TKA 术前骨质疏松发生率为 23%,而术后为 36.7%,这种差异提示 TKA 术后全身骨密度显著下降,且除桡骨远端 1/3,其余标准测量部位骨密度男、女性间无显著差异。Beaupre 等[26]一项前瞻性研究发现初次 TKA 术后 1 年全髋骨密度显著下降了 1.80%,且女性较男性骨丢失更多。

膝关节置换术后,关节假体改变了股骨、胫骨的机械受力,假体周围骨结构及骨密度会随之改变,可能会进一步增加术后并发症发生风险[27]。因此,腰椎、髋部和桡骨远端 1/3 的骨密度可能无法代表假体周围骨密度。

据文献报道[28],TKA 术后胫骨近端假体周围骨密度呈下降趋势,于术后 6 个月内下降最为显著。Mau-Moeller 等[29]研究发现,TKA 术后 3 个月股骨假体周围骨密度显著下降,这与前期文献报道结果一致,而胫骨假体周围骨密度改变却无统计学差异,这可能是该研究中心样本量小使得因果分析的检验效能系数较低所致。Jaroma 等[30]一项 7 年随访研究发现,术前膝关节内翻畸形患者术后 7 年胫骨内侧平台假体周围骨密度下降 13%,术前膝关节外翻畸形患者则下降 12%,而外侧平台差异无统计学意义。Winther 等[28]研究报道了使用标准多孔涂层胫骨假体者,术后 12 个月胫骨外侧平台假体周围骨密度相对增加 8.1%,而内侧平台却无显著差异。而 Prince 等[31]一项荟萃分析发现,TKA 患者术后假体周围骨密度迅速显著下降,并在 2 年内无恢复迹象,术后 6 个月同侧假体周围骨密度快速下降达 15%。而假体周围骨密度迅速显著下降造成的骨丢失也增加了假体松动、假体周围骨折发生风险。

3. UKA 术后骨密度变化

相较于 TKA,UKA 具有创伤小、恢复迅速、术后关节功能更接近于生理状态且能够保留更多骨量等优点[11, 27]。然而,UKA 术后应力遮挡等原因导致的骨质吸收会改变假体周围骨密度,这也会加快假体早期松动过程[32],因此早期发现假体周围骨密度改变具有重要意义。

Richmond 等[33]研究发现,UKA 患者术后 2 年胫骨近端内外侧松质骨平均骨密度减少 1.5%,皮质骨平均骨密度减少 0.4%。Soininvaara 等[27]研究表明,UKA 术后 3 个月内假体周围骨丢失发生率最高,股骨干区平均骨密度下降 4.4%,股骨远端干骺端下降 11.2%~11.9%,这些区域骨密度的改变在术后 2~7 年无明显进展,趋于稳定。Tuncer 等[32]随访发现 UKA 术后假体周围骨密度最大下降幅度发生在术后 6 个月,平均下降 18%,而变化最大区域为胫骨髁间隆突下。Koppens 等[34]研究发现邻近假体的胫骨端骨密度在术后呈下降趋势,但非手术侧与之类似,这表明年龄增长所致的自然骨密度下降可能比 UKA 术后应力改变所致的骨密度下降更显著。

4. 假体周围骨密度变化的影响因素

4.1. 检测相关因素

Therbo 等[35]研究发现在使用 DEXA 测量 TKA 术后股骨远端骨密度时,股骨远端旋转角度会影响骨密度值的精确度。重复测量股骨远端在 0°、20° 和 40° 时的骨密度,变异系数分别是 0.6%、10% 和 15%。此外,Stilling 等[36]的实验室研究表明膝关节屈曲 0°~20° 范围内,每改变 5° 就能发现平均骨密度显著变化。因此,手术前后重复检测时保持患者同一体位对于保证骨密度测量的准确度具有重要意义。Stilling 等[36]推荐临床测量前后位膝关节骨密度时,采用下肢旋转中立位、膝关节屈曲 25° 的体位,在该体位测量具有较高精确度,变异系数为 1.8%~3.7%,对术后及随访均适用。

4.2. 体质量

许多文献报道了体质量或去脂体质量对不同部位骨密度的影响。van Loon 等[37]报道了高体质量指数与 TKA 术后早期骨丢失量成负相关。Järvenpää等[38]一项前瞻性随访研究发现,术后假体周围骨丢失持续存在,但骨密度下降与临床不良表现无相关性,而肥胖患者(体质量指数≥30 kg/m2)的骨丢失量较非肥胖者少,这可能是高体质量相关骨应力反应的结果。Ishii 等[39]一项单中心回顾性研究发现,体质量是 TKA 患者术后中、远期胫骨端骨密度变化的重要影响因素,并提出对体质量的管理有助于防止 TKA 患者因年龄增长造成的胫骨端骨密度下降。但 Mau-Moeller 等[29]一项前瞻性小样本量队列研究却发现,高体质量与假体周围高骨密度无相关性,但这也可能是研究样本量较少所致。Palmer 等[40]一项横断面研究发现,下肢去脂体质量和全身去脂体质量是男性患者骨密度重要预测因素。

4.3. 年龄

Vondracek 等[41]通过对 1993 年—2008 年相关文献检索分析,发现在健康绝经前女性中,DEXA 测量的骨密度每年有 0.25%~1% 轻微但有统计学意义的下降。也有研究发现年龄与骨密度存在微弱的负相关,且年龄相关的骨密度下降更多发生在女性患者中[39-42]。Levitz 等[6]研究发现 TKA 术后 8 年,胫骨近端假体下骨密度每年持续下降 5%。因此,高龄可能是骨密度下降的危险因素之一。

4.4. 日常活动

Marques 等[43]通过对随机对照试验进行荟萃分析,提出日常活动有助于增加老年人骨密度。此外,Pettersson 等[44]报道高强度身体活动可显著增加年轻成年男性胫骨近端骨密度。但 Mau-Moeller 等[29]研究发现,对于 TKA 患者,以平均步数表示的日常活动量与假体周围骨密度无显著相关性。Ishii 等[39]研究也发现,日常活动与 TKA 术后假体周围骨密度无关,但并未说明日常活动量水平是否对假体周围骨密度有显著影响。

4.5. 假体相关因素

Seki 等[45]研究报道骨水泥与非骨水泥 TKA 术后股骨远端骨密度存在差异,骨水泥 TKA 术后骨密度下降 57%,而非骨水泥下降 28%。然而,Abu-Rajab 等[46]研究发现,尽管骨水泥与非骨水泥低应力旋转平台 TKA 术后绝对和相对假体周围骨密度均有显著下降,但两种不同固定方式的假体周围骨密度无统计学差异。此外,Schlegel 等[47]研究了 3 种 TKA 骨水泥固定技术对术后假体周围骨密度的影响,发现骨水泥穿透力随骨密度增加而降低,而表面强度随骨密度增加而增加,但 3 种骨水泥固定技术在骨水泥穿透力和表面强度方面无显著差异。

在假体设计方面,Minoda 等[48]研究发现固定轴承和活动轴承 TKA 术后胫骨骨密度无显著差异。同样,Tjørnild 等[49]研究发现固定轴承和活动轴承 TKA 术后 1 年胫骨骨密度下降,2 年时骨密度则接近基线水平,而两种假体 TKA 术后骨丢失量相似,无显著差异。Lonner 等[50]研究发现在骨水泥胫骨柄假体组,术后胫骨假体周围骨密度明显下降,但与固定柱胫骨假体组无统计学差异。Winther 等[28]报道了非骨水泥 TKA 术后 2 年,使用标准多孔等离子涂层假体者胫骨平台外侧骨密度显著增加,而新型多孔钛结构假体则无明显增加,但两种假体均有助于保持胫骨假体周围的骨密度。

在假体材料方面,Scott 等[51]报道了使用活动轴承金属衬垫假体和固定轴承全聚乙烯假体行 UKA 术后,两种假体周围骨密度无统计学差异。Yoon 等[52]研究发现对于使用钛假体和钴-铬假体行 TKA 患者,术后 1 年两种假体周围平均骨密度均呈下降趋势,只使用钴-铬假体者术后 1、2 年假体周围平均骨密度有显著差异。相比于钛假体,钴-铬假体术后透亮线的发生率更高,骨密度减少程度更大,而相同假体材料、不同假体设计间骨密度变化并无统计学差异。因此,Yoon 等[52]推测假体周围骨质吸收与使用假体的材料相关,而与假体设计无关。

5. TKA 术后骨密度降低的药物防治

狄诺塞麦是一种能够与 NF-κB 配体受体激动剂(receptor activator of NF-κB ligand,RANKL)相结合的抗 RANKL 单克隆抗体,与假体周围骨密度相关,对抑制骨吸收有显著疗效[53-54]。Murahashi 等[53]研究发现狄诺塞麦在 TKA 术后早期能有效减少假体周围骨密度降低;线性回归分析显示狄诺塞麦的使用与骨密度成正相关;使用狄诺塞麦能促进假体的早期稳固,同时也可能有助于防止假体早期移位,降低翻修率。

双膦酸盐是一种广泛应用于治疗骨质疏松症的有效抗骨吸收药物,能抑制破骨细胞的功能并诱导其凋亡[55-56],口服双膦酸盐能减少假体周围透亮线。Jaroma 等[57]研究发现相比于只使用钙剂的患者,使用阿伦膦酸盐的患者术后胫骨平台外侧骨密度显著增加,然而两组股骨干骺端、胫骨内侧平台和胫骨干区骨密度变化无显著差异。Soininvaara 等[58]研究发现口服双膦酸盐和钙剂能显著抑制 TKA 术后早期骨密度降低。Shi 等[59]通过荟萃分析发现双膦酸盐能短期减少 TKA 术假体骨丢失,相比于胫骨近端区,双膦酸盐的使用能更有效地保留内外侧胫骨平台区骨密度。此外,也有文献报道 TKA 术后最初 6 个月服用阿伦膦酸盐,术后 6、12 个月骨密度增加[60];同时,口服双膦酸盐患者的假体翻修可能性降低了 59%[61]

特立帕肽是一种增加新骨形成的治疗药物,对骨折高危患者有效[62]。Kobayashi 等[63]研究发现在预防全髋关节置换术后假体周围骨密度丢失方面,特立帕肽与阿伦膦酸盐具有相同疗效。此外,Kaneko 等[64]研究发现 TKA 术后每周 1 次使用特立帕肽能促进骨-假体界面内侧骨生长,这表明特立帕肽能增加 TKA 术后胫骨内侧假体周围骨密度。Suzuki 等[65]研究发现 TKA 术后使用 1 年特立帕肽能增加股骨、胫骨假体周围骨密度。对于骨质疏松患者来说,在 TKA 术后使用特立帕肽是一个合理选择,能够保持或改善假体周围骨密度。

以上药物在一定程度上能够保持或改善假体周围骨密度,而假体周围骨密度的增加有利于防治膝关节置换术后早期移位所致假体松动[58],同时也可提高假体稳定性[59],减小假体周围骨折风险,延长假体生存率[66]。此外,骨密度的增加也可明显改善术后膝关节长期疼痛等并发症[67]

6. 总结与展望

膝关节置换术后,关节假体会改变股骨、胫骨原来的机械受力,导致机体对假体周围骨密度及骨架构进行了调整。而假体周围骨密度的改变与术后假体松动、假体周围骨折等严重并发症相关。早期研究发现,假体周围骨密度的改变有助于早期防治膝关节置换术后并发症的发生、发展,但目前研究认为仍存在以下问题:① 膝关节置换术后骨密度改变机制尚不明确,目前对于检测时患者体位、年龄、体质量、日常活动、假体固定方式、假体设计以及假体材料等对骨密度的影响存在争议。② DEXA 是目前评估骨密度最常用测量方法,但对于骨微结构的评估存在不足,仍需探索评估骨密度的新技术、新方法,以促进膝关节置换术后骨密度改变的机制研究。③ 对于术后防治骨密度改变方面,目前对使用药物、用药时间、疗程等方面的研究仍存在争议,有待更多高质量、多中心、大样本、长期随访研究证明其疗效。

作者贡献:所有作者均参与文章的构思、设计;魏文兴负责查阅文献、撰写文章初稿;沈彬负责指导文章写作、审阅和修改文章;吴元刚、曾羿负责部分参考文献的收集和文章审阅。

利益冲突:所有作者声明,在课题研究和文章撰写过程中不存在利益冲突。

References

  • 1.Hsu H, Siwiec RM Knee Osteoarthritis. Treasure Island (FL): StatPearls Publishing. 2020:1–2. [PubMed] [Google Scholar]
  • 2.McMahon SE, Doran E, O’Brien S, et al Seventeen to twenty years of follow-up of the low contact stress rotating-platform total knee arthroplasty with a cementless tibia in all cases. J Arthroplasty. 2019;34(3):508–512. doi: 10.1016/j.arth.2018.11.024. [DOI] [PubMed] [Google Scholar]
  • 3.Sartawi M, Zurakowski D, Rosenberg A Implant survivorship and complication rates after total knee arthroplasty with a third-generation cemented system: 15-year follow-up. Am J Orthop (Belle Mead NJ) 2018;47(3) doi: 10.12788/ajo.2018.0018. [DOI] [PubMed] [Google Scholar]
  • 4.Parratte S, Ollivier M, Lunebourg A, et al Long-term results of compartmental arthroplasties of the knee: Long term results of partial knee arthroplasty. Bone Joint J. 2015;97-B(10 Suppl A):9–15. doi: 10.1302/0301-620X.97B10.36426. [DOI] [PubMed] [Google Scholar]
  • 5.Cucchi D, Menon A, Galliera E, et al A prospective assessment of periprosthetic bone mineral density and osteoimmunological biomarkers variations after total knee replacement surgery. J Clin Densitom. 2019;22(1):86–95. doi: 10.1016/j.jocd.2018.05.039. [DOI] [PubMed] [Google Scholar]
  • 6.Levitz CL, Lotke PA, Karp JS Long-term changes in bone mineral density following total knee replacement. Clin Orthop Relat Res. 1995;(321):68–72. [PubMed] [Google Scholar]
  • 7.Gulati A, Chau R, Pandit HG, et al The incidence of physiological radiolucency following Oxford unicompartmental knee replacement and its relationship to outcome. J Bone Joint Surg (Br) 2009;91(7):896–902. doi: 10.1302/0301-620X.91B7.21914. [DOI] [PubMed] [Google Scholar]
  • 8.Schultz K, Wolf JM Emerging technologies in osteoporosis diagnosis. J Hand Surg (Am) 2019;44(3):240–243. doi: 10.1016/j.jhsa.2018.07.006. [DOI] [PubMed] [Google Scholar]
  • 9.Choksi P, Jepsen KJ, Clines GA The challenges of diagnosing osteoporosis and the limitations of currently available tools. Clin Diabetes Endocrinol. 2018;4:12. doi: 10.1186/s40842-018-0062-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Lespessailles E, Ibrahim-Nasser N, Toumi H, et al Contribution of high resolution peripheral quantitative CT to the management of bone and joint diseases. Joint Bone Spine. 2018;85(3):301–306. doi: 10.1016/j.jbspin.2017.04.012. [DOI] [PubMed] [Google Scholar]
  • 11.Gilchrist N, Hooper G, Frampton C, et al Measurement of bone density around the Oxford medial compartment knee replacement using iDXA. A precision study. J Clin Densitom. 2013;16(2):178–182. doi: 10.1016/j.jocd.2012.02.015. [DOI] [PubMed] [Google Scholar]
  • 12.Link TM Osteoporosis imaging: state of the art and advanced imaging. Radiology. 2012;263(1):3–17. doi: 10.1148/radiol.12110462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Binkley N, Krueger D, Vallarta-Ast N An overlying fat panniculus affects femur bone mass measurement. J Clin Densitom. 2003;6(3):199–204. doi: 10.1385/JCD:6:3:199. [DOI] [PubMed] [Google Scholar]
  • 14.Schreiber JJ, Anderson PA, Rosas HG, et al Hounsfield units for assessing bone mineral density and strength: a tool for osteoporosis management. J Bone Joint Surg (Am) 2011;93(11):1057–1063. doi: 10.2106/JBJS.J.00160. [DOI] [PubMed] [Google Scholar]
  • 15.Lee S, Chung CK, Oh SH, et al Correlation between Bone Mineral Density Measured by Dual-Energy X-ray absorptiometry and hounsfield units measured by diagnostic CT in lumbar spine. J Korean Neurosurg Soc. 2013;54(5):384–389. doi: 10.3340/jkns.2013.54.5.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Johnson CC, Gausden EB, Weiland AJ, et al Using hounsfield units to assess osteoporotic status on wrist computed tomography scans: Comparison with dual energy X-ray absorptiometry. J Hand Surg (Am) 2016;41(7):767–774. doi: 10.1016/j.jhsa.2016.04.016. [DOI] [PubMed] [Google Scholar]
  • 17.Munro JT, Pandit S, Walker CG, et al Loss of tibial bone density in patients with rotating- or fixed-platform TKA. Clin Orthop Relat Res. 2010;468(3):775–781. doi: 10.1007/s11999-009-0794-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Reilly K, Munro J, Pandit S, et al Inter-observer validation study of quantitative CT-osteodensitometry in total knee arthroplasty. Arch Orthop Trauma Surg. 2007;127(8):729–731. doi: 10.1007/s00402-007-0351-6. [DOI] [PubMed] [Google Scholar]
  • 19.Zannoni C, Viceconti M, Pierotti L, et al Analysis of titanium induced CT artifacts in the development of biomechanical finite element models. Med Eng Phys. 1998;20(9):653–659. doi: 10.1016/S1350-4533(98)00076-9. [DOI] [PubMed] [Google Scholar]
  • 20.Nishiyama KK, Shane E Clinical imaging of bone microarchitecture with HR-pQCT. Curr Osteoporos Rep. 2013;11(2):147–155. doi: 10.1007/s11914-013-0142-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Burghardt AJ, Kazakia GJ, Link TM, et al Automated simulation of areal bone mineral density assessment in the distal radius from high-resolution peripheral quantitative computed tomography. Osteoporos Int. 2009;20(12):2017–2024. doi: 10.1007/s00198-009-0907-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Gazdzik TS, Gajda T, Kaleta M Bone mineral density changes after total knee arthroplasty: one-year follow-up. J Clin Densitom. 2008;11(3):345–350. doi: 10.1016/j.jocd.2008.04.007. [DOI] [PubMed] [Google Scholar]
  • 23.Kim KK, Won YY, Heo YM, et al Changes in bone mineral density of both proximal femurs after total knee arthroplasty. Clin Orthop Surg. 2014;6(1):43–48. doi: 10.4055/cios.2014.6.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Hahn MH, Won YY Bone mineral density changes after total knee replacement in women over the age of 65. J Bone Metab. 2013;20(2):105–109. doi: 10.11005/jbm.2013.20.2.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Bernatz JT, Krueger DC, Squire MW, et al Unrecognized osteoporosis is common in patients with a well-functioning total knee arthroplasty. J Arthroplasty. 2019;34(10):2347–2350. doi: 10.1016/j.arth.2019.05.041. [DOI] [PubMed] [Google Scholar]
  • 26.Beaupre LA, Rezansoff A, Clark M, et al Bone mineral density changes in the hip and spine of men and women 1-year after primary cemented total knee arthroplasty: Prospective cohort study. J Arthroplasty. 2015;30(12):2185–2189. doi: 10.1016/j.arth.2015.06.026. [DOI] [PubMed] [Google Scholar]
  • 27.Soininvaara TA, Harju KA, Miettinen HJ, et al Periprosthetic bone mineral density changes after unicondylar knee arthroplasty. Knee. 2013;20(2):120–127. doi: 10.1016/j.knee.2012.10.004. [DOI] [PubMed] [Google Scholar]
  • 28.Winther N, Jensen C, Petersen M, et al Changes in bone mineral density of the proximal tibia after uncemented total knee arthroplasty. A prospective randomized study. Int Orthop. 2016;40(2):285–294. doi: 10.1007/s00264-015-2852-1. [DOI] [PubMed] [Google Scholar]
  • 29.Mau-Moeller A, Behrens M, Felser S et al Modulation and predictors of periprosthetic bone mineral density following total knee arthroplasty. Biomed Res Int. 2015;2015:418168. doi: 10.1155/2015/418168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Jaroma A, Soininvaara T, Kröger H Periprosthetic tibial bone mineral density changes after total knee arthroplasty. Acta Orthop. 2016;87(3):268–273. doi: 10.3109/17453674.2016.1173982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Prince JM, Bernatz JT, Binkley N, et al Changes in femoral bone mineral density after total knee arthroplasty: a systematic review and meta-analysis. Arch Osteoporos. 2019;14(1):23. doi: 10.1007/s11657-019-0572-7. [DOI] [PubMed] [Google Scholar]
  • 32.Tuncer M, Patel R, Cobb JP, et al Variable bone mineral density reductions post-unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2015;23(8):2230–2236. doi: 10.1007/s00167-014-3014-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Richmond BI, Hadlow SV, Lynskey TG, et al Proximal tibial bone density is preserved after unicompartmental knee arthroplasty. Clin Orthop Relat Res. 2013;471(5):1661–1669. doi: 10.1007/s11999-013-2784-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Koppens D, Rytter S, Dalsgaard J et al The effect of bone quality on tibial component migration in medial cemented unicompartmental knee arthroplasty. A prospective cohort study using dual X-ray absorptiometry and radiostereometric analysis. J Arthroplasty. 2020;35(3):675–682. e2. doi: 10.1016/j.arth.2019.10.027. [DOI] [PubMed] [Google Scholar]
  • 35.Therbo M, Petersen MM, Schrøder HM, et al The precision and influence of rotation for measurements of bone mineral density of the distal femur following total knee arthroplasty: a methodological study using DEXA. Acta Orthop Scand. 2003;74(6):677–682. doi: 10.1080/00016470310018199. [DOI] [PubMed] [Google Scholar]
  • 36.Stilling M, Søballe K, Larsen K, et al Knee flexion influences periprosthetic BMD measurement in the tibia. Suggestions for a reproducible clinical scan protocol. Acta Orthop. 2010;81(4):463–470. doi: 10.3109/17453674.2010.501746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.van Loon CJ, Oyen WJ, de Waal Malefijt MC, et al Distal femoral bone mineral density after total knee arthroplasty: a comparison with general bone mineral density. Arch Orthop Trauma Surg. 2001;121(5):282–285. doi: 10.1007/s004020000232. [DOI] [PubMed] [Google Scholar]
  • 38.Järvenpää J, Soininvaara T, Kettunen J, et al Changes in bone mineral density of the distal femur after total knee arthroplasty: a 7-year DEXA follow-up comparing results between obese and nonobese patients. Knee. 2014;21(1):232–235. doi: 10.1016/j.knee.2013.03.004. [DOI] [PubMed] [Google Scholar]
  • 39.Ishii Y, Noguchi H, Sato J, et al Association between body weight and proximal tibial bone mineral density after bilateral total knee arthroplasty. Knee. 2017;24(5):1153–1159. doi: 10.1016/j.knee.2017.06.012. [DOI] [PubMed] [Google Scholar]
  • 40.Palmer IJ, Runnels ED, Bemben MG, et al Muscle-bone interactions across age in men. J Sports Sci Med. 2006;5(1):43–51. [PMC free article] [PubMed] [Google Scholar]
  • 41.Vondracek SF, Hansen LB, McDermott MT Osteoporosis risk in premenopausal women. Pharmacotherapy. 2009;29(3):305–317. doi: 10.1592/phco.29.3.305. [DOI] [PubMed] [Google Scholar]
  • 42.Runolfsdottir HL, Sigurdsson G, Franzson L, et al Gender comparison of factors associated with age-related differences in bone mineral density. Arch Osteoporos. 2015;10:214. doi: 10.1007/s11657-015-0214-7. [DOI] [PubMed] [Google Scholar]
  • 43.Marques EA, Mota J, Carvalho J Exercise effects on bone mineral density in older adults: a meta-analysis of randomized controlled trials. Age (Dordr) 2012;34(6):1493–1515. doi: 10.1007/s11357-011-9311-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Pettersson U, Nordström P, Lorentzon R A comparison of bone mineral density and muscle strength in young male adults with different exercise level. Calcif Tissue Int. 1999;64(6):490–498. doi: 10.1007/s002239900639. [DOI] [PubMed] [Google Scholar]
  • 45.Seki T, Omori G, Koga Y, et al Is bone density in the distal femur affected by use of cement and by femoral component design in total knee arthroplasty? J Orthop Sci. 1999;4(3):180–186. doi: 10.1007/s007760050091. [DOI] [PubMed] [Google Scholar]
  • 46.Abu-Rajab RB, Watson WS, Walker B, et al Peri-prosthetic bone mineral density after total knee arthroplasty. Cemented versus cementless fixation. J Bone Joint Surg (Br) 2006;88(5):606–613. doi: 10.1302/0301-620X.88B5.16893. [DOI] [PubMed] [Google Scholar]
  • 47.Schlegel UJ, Bishop NE, Püschel K, et al Comparison of different cement application techniques for tibial component fixation in TKA. Int Orthop. 2015;39(1):47–54. doi: 10.1007/s00264-014-2468-x. [DOI] [PubMed] [Google Scholar]
  • 48.Minoda Y, Kobayashi A, Iwaki H, et al Comparison of bone mineral density between porous tantalum and cemented tibial total knee arthroplasty components. J Bone Joint Surg (Am) 2010;92(3):700–706. doi: 10.2106/JBJS.H.01349. [DOI] [PubMed] [Google Scholar]
  • 49.Tjørnild M, Søballe K, Hansen PM, et al Mobile-vs . fixed-bearing total knee replacement. Acta Orthop. 2015;86(2):208–214. doi: 10.3109/17453674.2014.968476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Lonner JH, Klotz M, Levitz C, et al Changes in bone density after cemented total knee arthroplasty: influence of stem design. J Arthroplasty. 2001;16(1):107–111. doi: 10.1054/arth.2001.16486. [DOI] [PubMed] [Google Scholar]
  • 51.Scott CE, Wade FA, Bhattacharya R, et al Changes in bone density in metal-backed and all-polyethylene medial unicompartmental knee arthroplasty. J Arthroplasty. 2016;31(3):702–709. doi: 10.1016/j.arth.2015.09.046. [DOI] [PubMed] [Google Scholar]
  • 52.Yoon C, Chang MJ, Chang CB, et al Bone mineral density around the knee joint: correlation with central bone mineral density and associated factors. J Clin Densitom. 2020;23(1):82–91. doi: 10.1016/j.jocd.2018.07.005. [DOI] [PubMed] [Google Scholar]
  • 53.Murahashi Y, Teramoto A, Jimbo S, et al Denosumab prevents periprosthetic bone mineral density loss in the tibial metaphysis in total knee arthroplasty. Knee. 2020;27(2):580–586. doi: 10.1016/j.knee.2019.12.010. [DOI] [PubMed] [Google Scholar]
  • 54.Josse R, Khan A, Ngui D, et al Denosumab, a new pharmacotherapy option for postmenopausal osteoporosis. Curr Med Res Opin. 2013;29(3):205–216. doi: 10.1185/03007995.2013.763779. [DOI] [PubMed] [Google Scholar]
  • 55.Goldring SR, Gravallese EM Bisphosphonates: environmental protection for the joint? Arthritis Rheum. 2004;50(7):2044–2047. doi: 10.1002/art.20383. [DOI] [PubMed] [Google Scholar]
  • 56.Muratore M, Quarta E, Quarta L, et al Ibandronate and cementless total hip arthroplasty: densitometric measurement of periprosthetic bone mass and new therapeutic approach to the prevention of aseptic loosening. Clin Cases Miner Bone Metab. 2012;9(1):50–55. [PMC free article] [PubMed] [Google Scholar]
  • 57.Jaroma AV, Soininvaara TA, Kröger H Effect of one-year post-operative alendronate treatment on periprosthetic bone after total knee arthroplasty. A seven-year randomised controlled trial of 26 patients. Bone Joint J. 2015;97-B(3):337–345. doi: 10.1302/0301-620X.97B3.33643. [DOI] [PubMed] [Google Scholar]
  • 58.Soininvaara TA, Jurvelin JS, Miettinen HJ, et al Effect of alendronate on periprosthetic bone loss after total knee arthroplasty: a one-year, randomized, controlled trial of 19 patients. Calcif Tissue Int. 2002;71(6):472–477. doi: 10.1007/s00223-002-1022-9. [DOI] [PubMed] [Google Scholar]
  • 59.Shi M, Chen L, Xin Z, et al Bisphosphonates for the preservation of periprosthetic bone mineral density after total joint arthroplasty: a meta-analysis of 25 randomized controlled trials. Osteoporos Int. 2018;29(7):1525–1537. doi: 10.1007/s00198-018-4488-7. [DOI] [PubMed] [Google Scholar]
  • 60.Wang CJ, Wang JW, Ko JY, et al Three-year changes in bone mineral density around the knee after a six-month course of oral alendronate following total knee arthroplasty. A prospective, randomized study. J Bone Joint Surg (Am) 2006;88(2):267–272. doi: 10.2106/00004623-200602000-00003. [DOI] [PubMed] [Google Scholar]
  • 61.Prieto-Alhambra D, Lalmohamed A, Abrahamsen B, et al Oral bisphosphonate use and total knee/hip implant survival: validation of results in an external population-based cohort. Arthritis Rheumatol. 2014;66(11):3233–3240. doi: 10.1002/art.38789. [DOI] [PubMed] [Google Scholar]
  • 62.Shiraki M, Ueda S, Sugimoto T, et al Treatment responses with once-weekly teriparatide therapy for osteoporosis. Osteoporos Int. 2016;27(10):3057–3062. doi: 10.1007/s00198-016-3640-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Kobayashi N, Inaba Y, Uchiyama M, et al Teriparatide versus alendronate for the preservation of bone mineral density after total hip arthroplasty-A randomized controlled trial. J Arthroplasty. 2016;31(1):333–338. doi: 10.1016/j.arth.2015.07.017. [DOI] [PubMed] [Google Scholar]
  • 64.Kaneko T, Otani T, Kono N, et al Weekly injection of teriparatide for bone ingrowth after cementless total knee arthroplasty. J Orthop Surg (Hong Kong) 2016;24(1):16–21. doi: 10.1177/230949901602400106. [DOI] [PubMed] [Google Scholar]
  • 65.Suzuki T, Sukezaki F, Shibuki T, et al Teriparatide administration increases periprosthetic bone mineral density after total knee arthroplasty: A prospective study. J Arthroplasty. 2018;33(1):79–85. doi: 10.1016/j.arth.2017.07.026. [DOI] [PubMed] [Google Scholar]
  • 66.Shi M, Chen L, Wu H, et al Effect of bisphosphonates on periprosthetic bone loss after total knee arthroplasty: a meta-analysis of randomized controlled trials. BMC Musculoskelet Disord. 2018;19(1):177. doi: 10.1186/s12891-018-2101-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Li Y, Ou Y, Zhu Y et al. The predictive significance of bone mineral density on postoperative pain relief in knee osteoarthritis patients after total knee arthroplasty: A prediction model. J Orthop Sci, 2020, S0949-2658(20)30152-4. doi: 10.1016/j.jos.2020.05.013.

Articles from Chinese Journal of Reparative and Reconstructive Surgery are provided here courtesy of Sichuan University

RESOURCES