Skip to main content
Ecology and Evolution logoLink to Ecology and Evolution
. 2021 Sep 28;11(20):14175–14216. doi: 10.1002/ece3.8134

An insight into molecular taxonomy of bufonids, microhylids, and dicroglossid frogs: First genetic records from Pakistan

Ayesha Akram 1,, Muhammad Rais 1, Karem Lopez‐Hervas 2, Rebecca D Tarvin 3,4, Muhammad Saeed 1, Daniel I Bolnick 5, David C Cannatella 6
PMCID: PMC8525160  PMID: 34707849

Abstract

The current study was focused on documentation of amphibian assemblage in North Punjab and Islamabad Capital Territory, Pakistan, by using mitochondrial gene sequences of 16S rRNA. Our study entailed 37% of the known amphibian species of the country. We provided a phylogenetic analysis based on 74 newly generated mitochondrial 16S rRNAs from nine species of genus Microlyla, Duttaphrynus, Allopaa, Nanorana, Sphaerotheca, Minervarya, Hoplobatrachus, and Euphlyctis. We employed the maximum‐likelihood inference and Bayesian analysis to assess the taxonomic status of the samples obtained from Pakistan, with respect to other congeneric species from surrounding regions. Our findings confirmed the taxonomic status of South Asian anuran species Duttaphrynus stomaticus, Duttaphrynus melanostictus, Microhyla nilphamariensis, Allopaa hazarensis, Nanorana vicina, Sphaerotheca maskeyi (synonym: S. pashchima), Minervarya pierrei, Hoplobatrachus tigerinus, and Euphlyctis kalasgramensis in Pakistan. We have reported new country records of genus Minervarya ( M. pierrei). Minervarya pierrei was previously misidentified as Fejervarya limnocharis, due to dearth of genetic information. We provided the first genetic records of our endemic species N. vicina. The results revealed the taxonomic placement of N. vicina with respect to its congeners and validated the taxonomic status of N. vicina from its type locality (Murree) for the first time. The findings of the present study also indicated the paraphyletic relationship of A.‐ hazarensis with Nanorana species. So, based on our phylogenetic inferences, morphological characters, and habitat preferences, validity of generic status of A. hazarensis is undecided. As our data were not enough to resolve this issue, we suggest sequencing of additional mitochondrial and nuclear genes in the future studies to get a better resolution. We recommend carrying out extensive surveys throughout the country for proper scientific documentation of amphibians of Pakistan. Many new species, some of them might be endemic to Pakistan, are expected to be discovered, and taxonomic status of other species would be resolved.

Keywords: endemism, Minervarya, Nanorana, new records, phylogeny


The current study was focused to document amphibian assemblage of North Punjab and Islamabad Capital Territory, Pakistan, by using 16S rRNA. Our findings on the taxonomic status of South Asian anuran species confirmed the presence of Duttaphrynus stomaticus, Duttaphrynus melanostictus, Microhyla nilphamariensis, Sphaerotheca maskeyi (synonym: S. pashchima) Hoplobatrachus tigerinus, Euphlyctis kalasgramensis and Allopaa hazarensis. We have reported new country records of Minervarya pierrei and reported the first genetic records of south asian endemic species Nanorana vicina from its type locality.

graphic file with name ECE3-11-14175-g016.jpg

1. INTRODUCTION

Identification of species by examining only morphological characters is difficult and may result in misidentifications (Stuart et al., 2006). Modern amphibian taxonomy relies heavily on molecular taxonomy and phylogeny (Frost et al., 2006). In the recent past, integrated taxonomic approaches have been applied successfully to resolve the complications associated with the species identification; see Phuge et al. (2020). In amphibian's taxonomy, many new species are being described worldwide (Frost, 2019) and the discovery of new anuran species is an ongoing activity (Ohler et al., 2009). Despite these new findings and descriptions, the amphibian species in South and South‐East Asia remain underestimated generally due to the presence of homoplasy in morphology of amphibians (Stuart et al., 2006).

Boulenger (1890) provided a detailed description of amphibians of British India (Now Pakistan, India, Myanmar, and Sri Lanka). A total of 348 amphibians have been described so far from the eight countries of South Asia, with significant contribution from India and Sri Lanka (Molur, 2008; Pratihar et al., 2014). The territory of Pakistan, which is influenced by fauna from different geographic directions, is divided zoo geographically into the Palearctic and Oriental regions (Khan, 2006). Pakistan is one of the important territories in Eurasia in respect of past biodiversity dynamics (Jablonski et al., 2020). The amphibians of Pakistan are represented by a heterogeneous assemblage of 24 anuran species belonging to nine genera (Duttaphrynus, Scutiger, Microhyla, Uperodon, Euphlyctis, Fejervarya, Hoplobatrachus, Allopaa, and Sphaerotheca) distributed over four families Bufonidae, Microhylidae, Megophryidae, and Dicroglossidae (Khan, 2006).

The contributions on diversity and ecology of amphibians of Pakistan include Khan (1976, 2001, 2006), Dubois and Khan (1979), Ohler and Dubois (2006), Ficetola et al. (2010), Yousaf et al. (2010), Tabassum et al. (2011), Rais et al. (2012, 2014), Pratihar et al. (2014), and Akram et al. (2015). Khan (2006) provided a checklist and identification key of anurans of Pakistan. The listing of species and their taxonomic status was based on morphological examination without any genetic confirmation and molecular taxonomy. As there is a vast sampling gap exists in the field of molecular taxonomy, strong uncertainties persist about the taxonomy of many anuran species of Pakistan. Molecular taxonomic studies are crucial to fill this gap. Few phylogenetic studies were recently conducted in Pakistan by Hussain et al. (2020) on genus Duttaphrynus, Jablonski et al. (2020) on genus Microhyla, Ali et al. (2020) on genus Euphlyctis, Jablonski et al. (2021) on genus Sphaerotheca, and Hofmann et al. (2021) on genus Allopaa. Despite these studies, there is scanty of information and anuran species from Pakistan are still underrepresented. The detailed phylogenetic relationship of anurans within the family Bufonidae, Microhylidae, and Dicroglossidae especially based on the samplings from Pakistan is extremely elusive.

In the present study, we will be focusing on the genetic records of family Bufonidae (genus Duttaphrynus), Microhylidae (genus Microhyla), and Dicroglossidae (Allopaa, Nanorana, Minervarya, Sphaerotheca, Hoplobatrachus, and Euphlyctis) from Northern Punjab (Rawalpindi District) and Islamabad Capital Territory, Pakistan. The anuran fauna of this region also include endemic species such as Nanorana vicina, which is endemic to South Asia, and Allopaa hazarensis, which is endemic to Pakistan. We therefore in this study provided the molecular evidences and assemblage of reported anuran species of North Punjab (Rawalpindi District) and Islamabad Capital Territory, Pakistan.

2. MATERIALS AND METHODS

2.1. Sampling area

The selected sampling area was Rawalpindi District (North Punjab) and Islamabad Capital Territory of Pakistan (Figures 1 and 2). The Rawalpindi District (33.4095°N, 72.9933°E) is located in the northwest of Punjab Province and covers an area of 5,286 km2. The area is rocky and has mostly scrub vegetation. Administratively, the district has seven tehsils (Rawalpindi, Gujar Khan, Kallar Syedan, Kahuta, Murree, Kotli Sattian, and Taxila). The areas experience a humid subtropical climate with long and hot summers, a short monsoon period, and mild wet winters (Chaudhry & Rasul, 2004). The average temperature ranges from 2°C in January to 38.6°C in the June. Tehsil Murree have an elevation of 804–2,291 m, with mean annual precipitation of 1,789 mm. The area features mainly subtropical Chir Pine (Pinus roxburghii) Forest (900–1,700 m elevation) and Himalayan Moist Temperate Forest. Other Tehsils such as Gujar Khan, Taxila, Rawalpindi, Kotli Sattian, and Kallar Syedan of Rawalpindi District have predominantly Subtropical Broad‐leaved Evergreen Forest or Scrub Forest with elevation <900 m (Sheikh & Hafeez, 2001). The district is drained by perennial and intermittent streams (Ahmed et al., 2020).

FIGURE 1.

FIGURE 1

Map of the study area showing sampling locations of genus Duttaphrynus and Microhyla in Rawalpindi District, Punjab Province and Islamabad Capital Territory, Pakistan

FIGURE 2.

FIGURE 2

Map of the study area showing sampling locations of genus Allopaa, Nanorana, Sphaerotheca, Minervarya, Hoplobatrachus and Euphlyctis in Rawalpindi District, Punjab Province and Islamabad Capital Territory, Pakistan

2.2. Field surveys

The specimens were collected from selected sites of study area (Figures 1 and 2) from February 2016 to October 2017. Field surveys were conducted in the morning (07:00–10:00) and evening (17:00–21:00). The length of field visits varied from a minimum of one day to a maximum of five days. All major habitats such as water, land, and vegetation were thoroughly searched, and only adult specimens were collected by hand or with dip net. The specimens were then brought to the Herpetology laboratory, Department to Wildlife Management, Pir Mehr Ali Shah‐Arid Agriculture University Rawalpindi, Pakistan.

2.3. Morphological identification

We collected nine anuran species, which included two toad species: Duttaphrynus stomaticus and Duttaphrynus melanostictus, and seven frog species: Microhyla nilphamariensis, Allopaa hazarensis, Nanorana vicina, Sphaerotheca maskeyi (synonym:S. pashchima), Minervarya pierrei, Hoplobatrachus tigerinus, and Euphlyctis kalasgramensis (see Figure 3). The specimens were initially examined and identified based on morphological characters described in Khan (2006), Padhye et al. (2017), Howlader et al. (2015a, 2015b), and Howlader et al. (2016).

FIGURE 3.

FIGURE 3

Anuran species of Rawalpindi District and areas of Islamabad. (a) South‐East Asian Toad (Duttaphrynus melanostictus); (b) Indus Valley Toad (Duttaphrynus stomaticus); (c) Nilphamari Narrow‐mouthed Frog (Microhyla nilphamariensis); (d) Pierre's Wart Frog (Minervarya pierrei); (e) Maskey's Burrowing Frog (Sphaerotheca maskeyi: synonym, S . pashchima); (f) Skittering Frog (Euphlyctis kalasgramensis); (g) Murree Hill Frog (Nanorana vicina); (h) Hazara Torrent Frog (Allopaa hazarensis). Photo credits: Muahmmad Rais and Muhammad Saeed

2.4. Molecular analysis

The anuran specimens were euthanized by using chloroform, and toe clips were removed and stored in 95% ethanol in sample tubes for genetic analysis. The voucher specimens were fixed and later preserved in 10% formalin solution. The preserved specimens were then deposited in the museum of Herpetology Laboratory, Department to Wildlife Management, PMAS‐AAUR. The general principles and guidelines of animal ethics were followed. The collected voucher specimens were not recognized as belonging to the threatened species and not listed in IUCN Red list or by CITES. Detailed lists of preserved voucher specimens are provided in Appendix 1.

2.4.1. DNA extraction, amplification, and sequencing

We extracted DNA from stored tissue samples (toe clips) by using Promega Genomic DNA purification and extraction kit with the provided protocol for animal tissue. Quality of extracted DNA was assessed by Agarose Gel electrophoresis, and quantity of extracted DNA was calculated with Qubit 2.0 Fluorometer by using provided protocol of High Sensitivity Assay Kit. Two sets of primers (see Appendix 2) were used for the PCR amplification of 16S mitochondrial gene. For genus Duttaphrynus, Microhyla, Sphaerotheca, Minervarya, Hoplobatrachus, and Euphlyctis, we used the primer pair 16SAR, 16SBR (Palumbi, 1996), and for genus Nanorana and Allopaa, we used the primer pair 16SC, 16SD (Cannatella et al., 1998). The PCR protocol of previous publication (Palumbi, 1996) was followed with few modifications for this study. Two mitochondrial fragments were amplified in 25 µl volume reaction. The recipe for the master mix is 2 µl of genomic DNA template, 2.5 µl of 10× PCR buffer, 0.5 µl of dNTP, 0.125 µl of Taq DNA polymerase, 0.5µl of forward primer, 0.5µl of reverse primer, and 18.875 µl of distilled water. The annealing temperature of the primers was 50°C. The thermocycler settings were as follows: initial denaturation step with 4 min at 94°C, 40 cycles of denaturation 30 s at 94°C, annealing for 30 s at 50°C, and extension for 90 s at 72°C. Final extension at 72°C was conducted for 7 min. DNA amplification was confirmed by agarose gel electrophoresis. The resulting PCR products were then cleaned using the Promega DNA purification kit (Wizard® SV Gel and PCR Clean‐Up System). The concentration of DNA was checked through NanoDrop Spectrophotometer (Invitrogen). The resulting PCR products were then sequenced in both directions using the same primers. Sanger sequencing was performed at the Institute for Cellular and Molecular Biology Core Facility, University of Texas Austin, Texas, USA. The sequences generated from the present study were deposited in the GenBank, and accession numbers are provided in Appendix 1.

2.4.2. Data analysis

For reading, editing, and making consensus of forward and reverse sequences, the program Geneious (ver. R 7.1.9) (Kearse et al., 2012) was used. The new 16S sequences obtained were blasted on NCBI Nucleotide Blast Tool to identify and collect reference sequences of the same and closely related species. Sequences with more than 95% percentage similarity were retrieved and included in the analysis in order to find a good match. To analyze the taxonomic placements of our samples/species, we also included the representative samples of other species and genera of geographically linked species distributed throughout Pakistan, India, Bangladesh, Nepal, Sri Lanka, Iran, China, Japan, Taiwan, Uzbekistan, Greece, Turkey, Oman, Yemen, Indonesia, Malaysia, Vietnam, Thailand, Madagascar, and also from Himalayan range.

Alignments for each family, that is, Bufonidae, Microhylidae, and Dicroglossidae were prepared separately. A total of 37 samples including 8 newly sequenced and 29 from GenBank (two out‐groups Ansonia longidigita and Ingerophrynus divergens) were used for the phylogenetic analysis of Bufonidae. For the Microhylidae, 48 sequences were used including 4 newly sequenced samples and 44 sequences from GenBank (including two out‐groups Uperodon systoma and Kaloula pulchra). For Dicroglossidae, a total of 260 sequences including 62 newly sequenced samples and 198 from GenBank (including out‐groups Rana asiatica and Rana catesbeiana) were used in the analysis of Dicroglossidae. The details of sequences generated in the present study along with those recovered from GenBank are provided in Appendix 1.

Nucleotide sequences were aligned using MAFFT multiple sequence alignment program v. 7 with the option ‐‐auto that chooses the most appropriate algorithm for the data type (Katoh & Standley, 2013). The ambiguities, insertion, and deletion of single nucleotides from the sequences were manually edited using program Geneious (ver. R 7.1.9) (Kearse et al., 2012). Phylogenetic analysis of sequences was performed with maximum‐likelihood analysis (Bootstrap value 100) on the CIPRES Science Gateway V. 3.3 (Miller et al., 2010) using the software IQ‐TREE (Nguyen et al., 2015) with 1,000 ultrafast bootstraps approximation (Hoang et al., 2018). The model selection for each analysis tree was done as part of the run in IQ‐TREE (Kalyaanamoorthy et al., 2017) using the option ‐TESTONLY. The best‐fit model for Bufonidae family was TIM2+F+I+G4, for Dicroglossidae GTR+F+I+G4, and for Microhylidae TIM2e+I+G4. The consensus tree was calculated using SumTrees v.5.4.1 (Sukumaran & Holder, 2010). The tree with the highest maximum likelihood was selected, and the support from the bootstrap was mapped into that topology. The best value of maximum likelihood for Bufonidae was −3001.2908, for Dicroglossidae −9362.9580, and for Microhylidae −2110.5332.

To evaluate different strategy, an alignment that takes into account the secondary structure was made, with the option Q‐INS‐i of MAFFT online service: multiple sequence alignment, interactive sequence choice, and visualization (https://mafft.cbrc.jp/alignment/server/, Katoh et al., 2019). Based on secondary structure alignment, Bayesian phylogenetic inference (BI) (posterior probability 1) was performed in MrBayes ver. 3.2.6, (Ronquist et al., 2011). We ran the BI tree in CIPRES using MrBayes on XSEDE. We used the reversible jump Markov chain Monte Carlo approach in order to calculate a model of DNA substitution, which allows us to examine among 203 substitutions model using AIC (Akaike, 1974) and BIC (Schwarz, 1978). We ran the BI analysis using a set parameters of two runs with eight chains with length of 40 million generations, sampling a tree every 1,000 generations. The convergence and effective sample sizes (ESSs) >200 of the runs were seen in TRACER v.1.6.0 (Rambaut et al., 2014). A burn‐in was defined at 10%, by using SUMTREES v.4.2.0 (Sukumaran & Holder, 2010), and we discarded the burn‐in and calculated a maximum clade credibility tree (MCCT).

The pairwise genetic distances between species groups were estimated. Within the group mean distance, between‐group mean distance was calculated by using uncorrected p‐distances in the software MEGA. 7.0 (Kumar et al., 2016).

3. RESULTS

3.1. Phylogenetic analysis of Bufonidae (genus Duttaphrynus)

We estimated phylogenies using the alternative alignments (primary and secondary structure), and found that the tree topologies are almost similar to each other. We conducted a maximum‐likelihood and Bayesian analyses for taxonomic identification of bufonid toads (Genus Duttaphrynus). The data matrix was comprised of 37 samples related to 20 species, including two out‐groups (Ansonia longidigita and Ingerophrynus divergens) and 18 in‐groups (Adenomus kelaartii, Pedostibes tuberculosus, Xanthophryne koynayensis, Bufotes surdus, B. pewzowi, B. variabilis, B. viridis, Duttaphrynus melanostictus, D. stomaticus, D. brevirostris, D. atukoralei, D. dhufarensis, D. hololius, D. parietalis, D. scaber, D. stuarti, D. crocus, and D. himalayanus) (Figure 4; Appendix 3). All the newly sequenced samples of D. stomaticus and D. melanostictus recovered in both ML and BI trees with bootstrap value for D. stomaticus clade were 82% and for D. melanostictus 92%. The posterior probability value for D. stomaticus was 0.96, and D. melanostictus was 0.98 (Figure 4; Appendix 3). As there were two subclades of D. stomaticus observed in the phylogenetic inference, newly generated samples shared a same subclade with genetically identical sample of D. stomaticus (India), as uncorrected p‐distance within the group is 0%. However, in the second subclade of D. stomaticus the uncorrected p‐distance within the group was 1.7%. Moreover, between these two subclades of D. stomaticus was 3.9%, which reflects some genetic variation within species (Figure 4; Appendix 3; Tables S1 and S2).

FIGURE 4.

FIGURE 4

Maximum‐likelihood phylogeny from IQ‐TREE analyses based on the 16S rRNA, of genus Duttaphrynus, Family Bufonidae. The bootstrap percentages are indicated near each node. Sequences generated in the present study are highlighted. Details of samples are given in Appendix 1

The newly generated sequences of D. melanostictus are more closer/identical to the Indian samples (with uncorrected p‐distance within group was 0.6%) as compared to D. melanostictus from China and Vietnam samples. The uncorrected p‐distance between the two clades (China, Vietnam) and (Pakistan, India) was 2.7% (Figure 4; Appendix 3; Tables S1 and S2). The results showed the genetic confirmation of newly generated sequences of D. stomaticus and D. melanostictus from Pakistan.

3.2. Phylogenetic analysis of Microhylidae (genus Microhyla)

The maximum‐likelihood and Bayesian analyses of microhylid species were performed on data matrix comprised of 48 samples of 10 species including two out‐groups (Uperodon systoma and Kaloula pulchra) and 8 in‐groups of genus Microhyla (M. ornata, M. chakrapanii, M. fissipes, M. mukhlesuri, M. mymensinghensis, M. nilphamariensis, M. rubra, and M. taraiensis). The tree topologies were observed similar, based on both maximum‐likelihood and Bayesian analyses. The clade consisting of all sampled species of Genus Microhyla was highly supported in both ML and BI analyses (ML = 100 and PP = 1) (Figure 5; Appendix 4). However, the taxonomic status of our new samples of Microhyla nilphamariensis from Pakistan shared clade with the same species from India, Nepal, and Bangladesh which indicates its taxonomic status and wide distribution (BT = 37, PP = 0.83) (Figure 5; Appendix 4). The uncorrected p‐distance within the clade of M. nilphamariensis was 0.3%, which clearly indicates the genetic confirmation of these species (Table S4).

FIGURE 5.

FIGURE 5

Maximum‐likelihood phylogeny from IQ‐TREE analyses based on the 16S rRNA, of genus Microhyla, Family Microhylidae. The bootstrap percentages are indicated near each node. Sequences generated in the present study are highlighted. Details of samples are given in Appendix 1

3.3. Phylogenetic analysis of family Dicroglossidae

The maximum‐likelihood and Bayesian analyses were conducted on final alignments of 260 sequences of 8 genera (Allopaa, Nanorana, Quasipaa, Sphaerotheca, Fejervarya, Minervarya, Hoplobatrachus, and Euphlyctis), whereas two species of genus Rana (Rana catesbeiana and Rana asiatica) served as out‐groups. We therefore inferred the phylogenetic analysis of our samples of N. vicina and A. hazarensis with 16S rRNA data of other species of genus Nanorana (N. rarica, N. parkeri, N. ventripunctata, N. pleskei, N. yunnanensis, N. taihangnica, N. polunini, N. blanfordii, N. vicina, N. rostandi, N. ercepeae, N. liebigii, and unidentified samples of genus Nanorana from the Himalayan range). The phylogenetic trees inferred from both maximum‐likelihood and Bayesian analyses were similar, and the tree topologies were well resolved for the Quasipaa and Nanorana species (including Allopaa hazarensis samples) with BT = 99 and PP = 1 (Figure 6; Appendix 5). The N. vicina and A. hazarensis samples were nested within the clade of genus Nanorana with nodal support of BT = 96 and PP = 1. The species taxonomic placement of N. vicina and A. hazarensis was highly supported by ML (BT = 100) and BI (PP = 1) analyses (see Figures 6 and 7; Appendices 5 and 6). Newly sequenced samples of A. hazarensis appeared as paraphyletic with respect to Nanorana species. Allopaa hazarensis samples were recovered as nested within genus Nanorana, which may lead to the possibility of having same genus (Nanorana) (Figures 6 and 7; Appendices 5 and 6). Furthermore, our samples of N. vicina were identical (uncorrected p‐distance of 0%) to the N. vicina from Northwest Himalayas (India: Himachal Pradesh), which depicts the existing distribution of N. vicina from Pakistan (type locality: Murree) to Himachal Pradesh (Figure 7; Tables S5 and S6). The uncorrected p‐distance between N. vicina and A. hazarensis was 2.1% (Table S5).

FIGURE 6.

FIGURE 6

Maximum‐likelihood phylogeny from IQ‐TREE analyses based on the 16S rRNA, of genus Nanorana. The bootstrap percentages are indicated near each node. Details of samples are given in Appendix 1

FIGURE 7.

FIGURE 7

Maximum‐likelihood phylogeny from IQ‐TREE analyses based on the 16S rRNA, of genus Nanorana and Allopaa. The bootstrap percentages are indicated near each node. Sequences generated in the present study are highlighted. Details of samples are given in Appendix 1

The maximum likelihood and Bayesian inference trees recovered all sampled species of genera Sphaerotheca, Fejervarya, and Minervarya in their respective clades (Figure 8; Appendix 7). All the sampled species of genus Sphaerotheca (S. pluvialis, S. dobsonii, S. magadha, S. rolandae, S. breviceps, and S. pashchima) appeared as an independent taxonomic species rank but with low branch support. New samples of genus Sphaerotheca from Pakistan appeared in the clade of S. pashchima (Figure 8; Appendix 7). The uncorrected p‐distance within group of S. pashchima was 0%; however, between S. pashchima and S. breviceps, it was 6.4% (Tables S5 and S6).

FIGURE 8.

FIGURE 8

Maximum‐likelihood phylogeny from IQ‐TREE analyses based on the 16S rRNA, of genus Sphaerotheca, Fejervarya, and Minervarya. The bootstrap percentages are indicated near each node. Sequences generated in the present study are highlighted. Details of samples are given in Appendix 1

Species of genus Fejervarya (F. cancrivora and F. limnocharis) and Minervarya (M. rufescens, M. greenei, M. kudremukhensis, M. sahyadris, M. caperata, M. asmati, M. granosa, M. syhadrensis, and M. pierrei) appeared in their respective clade in both maximum likelihood and Bayesian inference (Figure 8; Appendix 7). The samples of M. syhadrensis, M. granosa, and M. pierrei were appeared in their respective subclades, under one main clade with maximum nodal support (BT = 100 and PP = 1). Newly generated sequences of M. pierrei are recovered as nested within M. pierrei clade. This species was previously misidentified in Pakistan as F. limnocharis (uncorrected p‐distance between F. limnocharis and M. pierrei was 7.9%). The uncorrected p‐distance between and within M. pierrei samples was observed as 0% (Tables S5 and S6). Therefore, we considered our samples as M. pierrei and reported first genetic record of this species from Pakistan.

For the genus Hoplobatrachus, we included species H. rugulose and H. tigerinus from its already established range of India and Bangladesh. Two haplotypes were observed in the H. tigerinus: One is from Indian population and other is Bangladeshi population. Our samples of H. tigerinus from Pakistan showed a well‐supported clade with Bangladesh samples of H. tigerinus (BT = 96 and PP = 1), which indicates validation of our samples as H. tigerinus (Figure 9; Appendix 8). The uncorrected p‐distance between H. rugulose and H. tigerinus was 6.3% and between haplotypes of Bangladesh and India was 1.6% (Table S5).

FIGURE 9.

FIGURE 9

Maximum‐likelihood phylogeny from IQ‐TREE analyses based on the 16S rRNA, of genus Hoplobatrachus and Euphlyctis. The bootstrap percentages are indicated near each node. Sequences generated in the present study are highlighted. Details of samples are given in Appendix 1

The highly supported clade of genus Euphlyctis (BT = 97 and PP = 1) included species of E. hexadactylus, E. karaavali, E. aloysii, E. ehrenbergi, E. cyanophlyctis, E. mudigere, and E. kalasgramensis (Figure 9: Appendix 8). Both maximum‐likelihood and Bayesian inference analyses of genus Euphlyctis strongly suggest that India, Pakistan, Bangladesh, and Iran populations of E. cyanophlyctis are split into four genetic lineages separated by nucleotide divergence (between group distance ranged from 0.9% to 3%) (Table S5). These lineages correspond to the clade from southern India, which include E. mudigere, the south Indian clade that we consider to be nominal E. cyanophlyctis because of its proximity to the type locality, the clade of E. kalasgramensis from specimens of Bangladesh, India (Assam), and Pakistan. The last clade was comprised of newly generated samples of Pakistan (Northern Punjab) and Iran (Figure 9; Appendix 8). Our samples of Euphlyctis appeared as a sister clade (BT=98; PP=1) of E. kalasgramensis clade constituting samples from Pakistan, India, and Bangladesh (Figure 9; Appendix 8). However, the uncorrected p‐distance between two sister clades of E. kalasgramensis was 2.1% (Table S5). Furthermore, two samples of Iran shared the same clade with our samples with 0% genetic divergence (Table S6).

4. DISCUSSION

We conducted the first comprehensive molecular study on anurans of Pakistan, which entailed about 37% of the known anuran species of the country, including eight genera and nine species. The maximum‐likelihood analysis based on standard alignment and Bayesian analysis based on secondary structure alignment validated the taxonomic status of D. stomaticus, D. melanostictus, M. nilphamariensis, S. maskeyi (synonym: S. pashchima), H. tigerinus, E. kalasgramensis, and A. hazarensis in Pakistan. We provided the genetic record of N. vicina (endemic to South Asia), for the first time from Pakistan and confirmed their species taxonomic ranks. We also reported first genetic record of genus Minervarya (M. pierrei) from Pakistan. This species were previously identified as F. limnocharis from the Rawalpindi District and Islamabad Capital Territory, Pakistan.

There are 12 true toad species of family Bufonidae, reported from Pakistan. Pakistani toad species can be represented in three groups viridis, stomaticus, and melanostictus (Khan, 1976). Duttaphrunus stomaticus and D. melanostictus toads can be morphologically identified by their parotid glands, rough skin with warts, and unwebbed toes. However, they can be distinguished from each other by distinct cranial crest present on head of D. melanostictus (Khan, 2006). Duttaphrynus stomaticus (Lütken, 1864) and D. melanostictus (Schneider, 1799) both include in a taxonomic framework of a monophyletic group of Duttaphrynus (Dubois & Ohler, 1999). Regardless of several studies on phylogenetic relationships in the family Bufonidae elsewhere, species from Indian subcontinent, especially from Pakistan, have not been studied in detail (Van Bocxlaer et al., 2009). In addition to many species with uncertain taxonomic affiliations, D. stomaticus and D. melanostictus (previously labeled as Bufo) require more detailed phylogenetic evidence (Van Bocxlaer et al., 2010). Van Bocxlaer et al. (2010) reported D. stomaticus being limited to the Western Ghats which is not true (Akram et al., 2015; Portik & Papenfuss, 2015). The previous sampling was limited to India leading to a sampling gap across Pakistan, a region that contains many widespread species in the genus Duttaphrynus and Bufotes (Portik & Papenfuss, 2015). Hussain et al. (2020) recently confirmed the taxonomic status of D. stomaticus and D. melanostictus from Punjab, but using one sample of each species, with limited dataset. We hereby presented an extensive dataset by incorporating 16S molecular data of 20 species, to confirm the taxonomic position of D. stomaticus and D. melanostictus with respect to other species of same genus. Our phylogenetic inferences yielded genetic confirmation of these two toads from Pakistan. The present study is largely in agreement with Portik and Papenfuss (2015) who recorded the species from Tharparkar (Sindh) and Lasbela (Baluchistan), and reported the possible distribution of D. stomaticus throughout Pakistan. We, however in this study provided genetic samples from northern Punjab, Pakistan and confirmed taxonomic status of D. stomaticus.

The species complex of D. melanostictus also entails taxonomic revision. It exhibits a wide geographical range (Wogan et al., 2016). The ancestral range for D. melanostictus is estimated to be the Myanmar–China border (Wogan et al., 2016). We validated the taxonomic status of D. melanostictus based on our maximum‐likelihood and Bayesian analyses, which inferred that newly reported samples from the study area are closely related to the Indian samples with uncorrected p‐distance within group of 0.6% (Table S2). The genetic divergence of 1.7% was observed between the two clades: (China, Vietnam) and (Pakistan, India) (Table S1). This genetic variation within species was previously reported by Khan (2001), who differentiated this species of D. melanostictus from South‐East Asian congeners based on morphological parameters and ranked Pakistani samples as a subspecies named D. melanostictus hazarensis. Our genetic data are also in agreement with this existing variation within this species across its range. Another study by Mulcahy et al. (2018) also indicated this genetic variation but referred all the samples as D. melanostictus until this species complex is revised.

Microhylid species are believed to be one of the most challenging taxonomical group of microhylid frogs due to their small size, conserved morphology, and widespread distribution of its members across Asia (Garg et al., 2018); Matsui et al., 2005, 2011). Molecular data have doubled the number of recognized Microhyla species found in South Asia (Hasan et al., 2014; Howlader et al., 2015a; Khatiwada et al., 2017; Seshadri et al., 2016; Vineeth et al., 2018; Wijayathilaka et al., 2016) and delineation of already known taxa (Garg et al., 2018; Hasan et al., 2012; Matsui, 2011; Matsui et al., 2005, 2011; Yuan et al., 2016), therefore elevating the importance of this region for Microhyla diversity.

Microhyla ornata was assumed to be broadly distributed species throughout India, Bangladesh, Bhutan, Nepal, Pakistan, and Sri Lanka (Dutta et al., 2008), on the basis of century old range assumptions (Boulenger, 1882; Parker, 1934) and previous literature (Matsui et al., 2005, 2011). The checklists and records lacked vouchers or molecular information (Dinesh et al., 2009; Khan, 2006; Mathew & Sen, 2010). The genetic variations within populations of Microhylid species were first examined by Matsui et al. (2005), among three geographical regions of South Asia, South‐East Asia, and East Asia. The study allocated and restricted the name M. ornata to the South Asian populations. Matsui et al. (2011) provided insights on phylogenetic relationships among Microhyla frogs across their known range; however, the South Asian members especially from Pakistan were not included. The South Asian M. ornata was recently described as a species complex (Hasan et al., 2012), followed by the description of four new and closely related species M. mymensinghensis (Hasan et al., 2014), M. mukhlesuri (Hasan et al., 2014), M. nilphamariensis (Howlader et al., 2015a), and M. taraiensis (Khatiwada et al., 2017). The recent reports of three new Microhylid species from India (M. mukhlesuri, M. mymensinghensis, and M. nilphamariensis) (Garg et al., 2018) lead to the urgency of the detailed sampling and genetic confirmation from its entire range. Based on extensive sampling by Wijayathilaka et al. (2016), M. ornata actually exhibits a narrow distribution limited to Peninsular India, more specifically in the states of Kerala, Karnataka, Tamil Nadu, Maharashtra, and Andhra Pradesh. Despite being a relatively newly identified microhylid, M. nilphamariensis is now genetically confirmed from the Western Ghats, Eastern Ghats up to Central India, East India, North India, Northeast India, Nepal, and Bangladesh (Garg et al., 2018).

The genus was represented in Pakistan by M. ornata (Duméril & Bibron, 1841); however, in view of the overall distribution and diversity of the genus based on genetic data (Garg et al., 2019; Gorin et al., 2020), populations from Pakistan are M. nilphamariensis. It was misidentified by previous studies such as Khan (2006), as previous research was only based on morphological examination. Our phylogenetic analysis inferred a resolved topology by showing an independent species taxonomic rank of each Microhylid species (Figure 5; Appendix 4). We confirmed existence of M. nilphamariensis in the study area, as our samples formed the same clade with M. nilphamariensis samples from India and Bangladesh. This evidence was supported by less support in ML analysis (<50%) but with high support in BI (0.83) (Figure 5; Appendix 4). As, M. nilphamariensis was misidentified as M. ornata from Pakistan, high genetic divergence (uncorrected p‐distance 5%) was also observed between M. nilphamariensis and M. ornata, which leads to recognition of this species as M. nilphamariensis (Table S3). Our results are in agreement with Howlader et al. (2015a), who reported genetic divergence of M. nilphamariensis with its congeners (5.7% to 13.2%). In a recent study, Jablonski et al. (2020) also revealed the species status of the genus from Pakistan (Islamabad and Northern Punjab) and reported the populations from the country as M. nilphamariensis. Based on recent studies of Garg et al. (2019) and Gorin et al. (2020), Jablonski et al. (2020) also reported the absence of M. ornata from Pakistan. Microhyla nilphamariensis species can also be morphologically characterized based on its dark brown diamond‐shaped marking on dorsal side, dark streak from back of eyes to shoulders, lateral bands from tip of snout to the groin on either side of the body, blackish‐brown mottling on throat, chest and margins of the belly, and indistinct inner metacarpal and metatarsal tubercles (Howlader et al., 2015a). We therefore in accordance with Jablonski et al. (2020) reported a significant range extension westward by confirmation of its presence in Pakistan that prior to this was only reported from northern Bangladesh, central and eastern Nepal, northwestern Uttar Pradesh, possibly northern Rajasthan, Kashmir, Assam, Western Ghats region of Maharashtra, Karnataka, and Kerala (Garg et al., 2018, 2019; Howlader et al., 2015a; Khatiwada et al., 2017).

We provided the first genetic records of N. vicina from Pakistan by sampling from its type locality (Murree). Nanorana vicina (Stolickza, 1872) is a least studied anuran species from Pakistan. After its initial reports from Pakistan by Dubois (1976) from Azad Kashmir, Baig (2002) from Ayubia, Masroor (2011) from Margalla Hills National Park, and Rais et al. (2014) from Murree (type locality), the genetic validity of this species was still lacking. Previously this species was reported based on its morphological characters. The morphological diagnostic features included brownish smooth body dorsum with a few tubercles on flanks, dark bars on forearm, thighs and shank, distinct sooty stripes from snout to angle of jaws (see Figure 3; Khan, 2006; Rais et al., 2014). Hofmann et al. (2019) performed phylogeny of genus Nanorana from vast Himalayan range, but there was a sampling gap from Pakistan. They did not confirm the taxonomic status of several samples of the Himalayan range and left them as unidentified species. Latterly, Hofmann et al. (2021) referred Nanorana sp. samples from Himachal Pradesh as N. vicina, based on morphological (photographic) identifications. However, in the present study, we validated the taxonomic status of N. vicina genetically, as our samples of N. vicina appeared identical (uncorrected p‐distance of 0%) to the samples of Nanorana (MN012201, MN012200, and MN012199) collected from Northwest Himalayas (India: Himachal Pradesh) in the study of Hofmann et al. (2019). Moreover, our maximum‐likelihood and Bayesian analyses showed the nesting of all species of genus Nanorana under one main clade with branch support of 96 (BT) and 1 (PP) (Figures 6 and 7; Appendices 5 and 6). So, we in accordance with Hofmann et al. (2021) referred these samples as N. vicina. The existing distribution of this South Asian endemic species from Pakistan (Type locality: Murree) to India: (India: Himachal Pradesh) northwest Himalayas is now evident based on our phylogenetic analysis (Figures 6 and 7; Appendices 5 and 6). The geographical distribution of N. vicina in the west Himalayan range is also supported by several studies such as Sclater (1892), who reported its distribution range to Shimla, India. Litvinchuk et al. (2017) also reported its distribution in the west Himalayan range (Himachal Pradesh). As this species was understudied and had no previous genetic information, this study would be used as a reference for the future validation of conspecifics throughout its range.

Allopaa hazarensis (Dubois & Khan, 1979), which is endemic to Pakistan, was first placed in the supergroup of Paa liebigii (Dubois & Khan, 1979). Latterly, based on its unique combination of morphological characters, Ohler and Dubois (2006) proposed a separate genus for this species. In a recent study, Hofmann et al. (2021) conducted the first phylogenetic analysis based on genetic sampling of A. hazarensis from foothills of Kashmir Himalaya, which also includes its type locality (Dutta, District Mansehra). In this study, we included samples from same geographical range, that is, Murree (North Punjab), and our results showed genetic resemblance of A. hazarensis with all congeners of Nanorana and recovered as paraphyletic with respect to all sampled Nanorana species (Figures 6 and 7; Appendices 5 and 6), with genetic distance of 2.1% between N. vicina and A. hazarensis (Table S5). Hofmann et al. (2021) also reported this paraphyletic relationship of Allopaa with respect to genus Nanorana.

The separate genus of Allopaa which was described by Ohler and Dubois (2006) on morphological basis has appeared as nested within genus Nanorana by genetic analysis. Allopaa hazarensis also share its morphological characters with N. vicina, except having grayish dorsum with a superimposed network of dark olive green color, with horny spinules on dorsal and lateral sides and well‐developed male secondary sex characters (nuptial spines) (Dubois & Khan, 1979) (see Figure 3). Both A. hazarensis and N. vicina share their habitat (freshwater streams) at higher elevation (>1,000 m) (Ahmed et al., 2020). So, based on our phylogenetic inferences, morphological characters, and habitat preferences, we doubt on the validity of generic status of A. hazarensis. As our data were not enough to resolve this taxonomic issue, we suggest sequencing of additional mitochondrial and nuclear genes in the future studies to get a better resolution. As a least studied genus, which is exclusive to Pakistan, with no other documented species till date, the genus is particularly important for Pakistan. However, to prevent taxonomic instability, we are hesitant to propose any taxonomic changes until further evidence is available.

Our results based on maximum‐likelihood and Bayesian analyses agreed with previous studies by recovering three main subclades, corresponding to (a) genus Sphaerotheca, (b) South Asian clade (Minervarya), and (c) South‐East Asian clade (Fejervarya) (Dinesh et al., 2015; Hasan et al., 2014; Howlader, 2011; Kotaki et al., 2008; Kuramoto et al., 2007; Pyron & Wiens, 2011; Sanchez et al., 2018). All the sampled species in our dataset of genus Sphaerotheca (S. pluvialis, S. dobsonii, S. magadha, S. rolandae, S. breviceps, S. pashchima) recovered to have an independent taxonomic species rank albeit with low branch support (Figure 8; Appendix 7). Sphaerotheca breviceps, which is endemic to South Asia, was considered as a species complex (Dubois, 1983; Dutta, 1986), but Padhye et al. (2017) restricted its distribution range to the eastern coastal plains of India and described a new species, S. pashchima from western and northern India, which was previously misidentified as S. breviceps. Sphaerotheca pashchima is considered as a morphologically and genetically distinct species from western Maharashtra, Gujarat, and Karnataka, after its comparison with topotypic material of S. breviceps. Sphaerotheca pashchima differs from S. breviceps by minor differences such as rounded snout, second finger length equal to or less than fourth finger length; first finger length less than third finger (Padhye et al., 2017). Khatiwada et al. (2021) declared S. pashchima as a synonym of S. maskeyi (Schleich and Anders, 1998). Jablonski et al. (2021) also designated this species as S. maskeyi, from Himalayan foothills of Pakistan, based on two genetic samples collected from Khyber Pakhtunkhwa Province, Pakistan. In this study, Sphaerotheca sp. collected from north Punjab were clustered within S. pashchima clade, with uncorrected p‐distance of 0%. However, genetic distance between S. pashchima and S. breviceps was 6.4% (Tables S5 and S6). Our results are in congruent with successive studies of Padhye et al. (2017), Jablonski et al. (2021), and Khatiwada et al. (2021), and we believe the presence of S. maskeyi (synonym:S. pashchima) in North Punjab and these molecular studies resolved the taxonomic status of this species complex. However, by extensive genetic sampling in future studies, we expect more species of Sphaerotheca to be discovered from the region.

The frogs from genus Fejervarya are morphologically similar to many new morphologically cryptic (but genetically distinct) species (Sanchez et al., 2018). Recent taxonomic rearrangement of Fejervarya treats South Asian and South‐East Asian taxa as separate genera. The South‐East Asian species Rana limnocharis Gravenhorst 1829 (the type species of Fejervarya) is the first‐described genus named in the group (Frost, 2019). Fejervarya Limnocharis was reported by earlier workers (such as by Akram et al., 2015; Khan, 2006; Pratihar et al., 2014; Rais et al., 2012) from Pakistan, merely on basis of morphological characters. In the present study, we did first ever phylogenetic analysis based on genetic sampling from Pakistan. Minervarya species from the North Punjab which was misidentified previously as F. limnocharis is actually M. pierrei with 7.9% uncorrected p‐distance between groups (Table S5). The second described clade (primarily South Asian taxa) contains the type species of both Minervarya and Zakerana (Minervarya sahyadris) Dubois et al. (2001), and Rana limnocharis syhadrensis Annandale (1919), from which Minervarya was described earlier and have taxonomic priority on Zakerana. Minervarya placement within the South Asian clade is also confirmed by our both maximum‐likelihood and bayesian analyses, as our newly sequenced samples were nested within Minervarya genus with maximum branch support. The samples of M. syhadrensis, M. granosa, and M. pierrei were appeared in their respective subclades, under one main clade with maximum nodal support (BT = 100 and PP = 1) (Figure 8; Appendix 7). Our results are in congruent with Köhler et al. (2019), who also grouped these species in one main clade by using Automated barcode recovery method.

Our sequences were placed in M. pierrei group, and the taxonomic status of our samples was also validated by having 0% uncorrected p‐distance within M. pierrei samples (Tables S5 and S6). Phuge et al. (2020) examined two M. syhadrensis‐like species, which they named as types A and B and comparison of these types with the type specimen of M. syhadrensis from Pune district (India) through morphological, call pattern, and phylogenetic analysis referred type A as M. syhadrensis, whereas the other type was referred as M. pierrei/ M. Agricola complex. We also analyzed these samples having accession numbers AY882955, AY882953, and AY882948 originated from India (West Bengal). Therefore, we in accordance with Phuge et al. (2020) referred samples originated from Pakistan, Bangladesh, Nepal, and west Bengal (India) as M. pierrei clade (Figure 8; Appendix 7). This species can also be identified through morphological features of pointed snout, dorsum postulate, and vocal sacs, and markings on throat are laterally dark and medially pale, mid‐dorsal line with constant width from snout to vent (see Figure 3) (Howlader et al., 2016). Furthermore, as type locality of M. pierrei is east Nepal, which is in closer proximity with Northern Punjab (Pakistan). Therefore, by considering geographical proximity, previous study of Phuge et al. (2020), our phylogenetic inferences (Figure 8; Appendix 7) and morphological characters, we identified our samples as M. pierrei. We believe that more extensive phylogenetic datasets are required in order to provide genetic evidences of M. syhadrensis and M. granosa in Pakistan.

The phylogenetic analysis of genus Hoplobatrachus showed that the Hoplobatrachus samples from Pakistan (North Punjab) were similar to Bangladeshi samples of H. tigerinus with 0% genetic divergence; however, 1.6% genetic divergences were observed between Indian and Bangladeshi clades (Tables S5 and S6) (Figure 9; Appendix 8). Similarly, in a recent study of Khatiwada et al. (2021), Nepalese samples were appeared as closely related to Bangladesh samples as compared to Indian subclade, which indicates that the H. tigerinus present in geographical range of Pakistan (North Punjab), Bangladesh, and Nepal are genetically identical; however, there is some genetic variation exist between these and Indian lineage.

The genus Euphlyctis (Schneider, 1799) is one of the most widespread in southern Asia. It comprises of seven extant species: Description of new species has been reported in this genus from past few years, that is, E. mudigere (Joshy et al., 2009) from Southern India and Sri Lanka, E. kalasgramensis (Howlader et al., 2015b) from the Barisal district of Bangladesh, and E. karaavali (Priti et al., 2016) from West Coastal Plains of India. E. cyanophlyctis, the most common species, exhibits high degree of morphological similarity with other species of the genus (Joshy et al., 2009). Its distribution is known from Southeastern Iran, Southern Afghanistan, Pakistan, Nepal, Bhutan, India, Sri Lanka, Myanmar, Malaysia and Vietnam. Phylogenetic analyses of genus Euphlyctis strongly suggest that India, Pakistan, Bangladesh, and Iran populations of E. cyanophlyctis are split into four genetic lineages separated by nucleotide divergence (between groups uncorrected p‐distance ranged from 0.9% to 3%) (Table S5). These lineages correspond to the separate clades, clade 1 corresponds to southern India, which include E. mudigere, and second clade is the south Indian clade that we consider to be nominal E. cyanophlyctis because of its proximity to the type locality. Third clade constitutes samples of E. kalasgramensis from Bangladesh, India (Assam), and Pakistan and the last clade with newly generated samples of Pakistan (Northern Punjab) and Iran (Figure 9; Appendix 8). Two samples (KF992800 and KF992815) from Iran in study of Khajeh et al. (2014) are genetically identical to our samples (0% uncorrected p‐distance with our samples) (Table S6). Our results are in agreement with the study of Khajeh et al. (2014), which suggested that samples from Iran population of E. cyanophlyctis are more closely related to Bangladeshi population, as compared to south Indian population. This argument became strengthened when Howlader et al. (2015b), described a new species E. kalasgramensis from Bangladeshi population.

The existence of E. kalasgramensis from Pakistan was also reported by Ali et al. (2020) from Kasur (Punjab), Pakistan, based on molecular and morphological evidences, but with limited dataset. The identification features of E. kalasgramensis include the following: the body dorsum without longitudinal folds, plain whitish ventral coloration and limbs with incomplete dark bands (Howlader et al. (2015b) see Figure 3. In the present study, we analyzed extensive datasets by adding other congeneric species of this genus in our phylogenetic inferences. Our samples of Euphlyctis appeared as a sister clade of E. kalasgramensis comprised of samples originated from Pakistan, India, and Bangladesh. The genetic divergence of 2.1% (uncorrected pdistance) was observed between these two sister clades (Table S5). However, we suggest detailed taxonomic study exclusively for this genus by including more mitochondrial and nuclear genes to clarify the presence of possible cryptic species under the taxonomic rank of Euphlyctis.

5. CONCLUSIONS

This study was aimed ‐ to document the species taxonomic status based on 16S rRNA. The phylogenetic analysis of South Asian anuran species was performed, in which new geneticsamples obtained from Pakistan and their respective congeners retrieved from GenBank were included. Our results based on maximum‐likelihood and Bayesian analyses of 16S rRNA data validated the taxonomic status of nine anuran species which belong to eight genera from Pakistan. These species include Duttaphrynus stomaticus, Duttaphrynus melanostictus, Microhyla nilphamariensis, Allopaa hazarensis, Nanorana vicina, Sphaerotheca maskeyi(synonym: S. pashchima), Minervarya pierrei, Hoplobatrachus tigerinus, and Euphlyctis kalasgramensis. We reported the first genetic record of genus Minervarya (M. pierrei), This species was misidentified previously in Pakistan as Fejervarya limnocharis. Furthermore, we provided the first genetic records of N. vicina from its type locality (Murree), which will provide a baseline data for this understudied species.

5.1. Recommendations

Systematic surveys have never been conducted in Pakistan to document amphibian diversity of the country. A deep review is still necessary to resolve the taxonomy morphologically undistinguishable putative species complexes in the future studies.

The known fauna was based on work carried by individuals within their own capacity without any institutional setup and coordination among the researchers. Either individuals working in academic and research institutions gather samples or their peers bring them the samples for species identification. Utilizing their full capacity and understanding, they try to identify the species. Amphibians in Pakistan have failed to find any place in policy and legislation. We suggest carrying out extensive surveys throughout the country for the collection of specimens and their genetic analysis in future studies. These analyses will confidently resolve the taxonomic issues caused due to morphologically undistinguishable species. This would result in proper scientific documentation of amphibians of Pakistan. Many new species, some of them might be exclusive to Pakistan, are expected to be discovered, and taxonomic status of other species would be resolved.

CONFLICT OF INTEREST

The authors declare no conflict of Interest. The funding agencies had no role in design of study, in the collection, analysis, interpretation of data, in the writing of the manuscript, or in the decision to publish the results.

AUTHOR CONTRIBUTIONS

Ayesha Akram: Conceptualization (equal); Data curation (lead); Formal analysis (lead); Funding acquisition (equal); Investigation (lead); Methodology (lead); Project administration (equal); Resources (lead); Software (lead); Supervision (equal); Validation (lead); Visualization (lead); Writing‐original draft (lead); Writing‐review & editing (lead). Muhammad Rais: Conceptualization (equal); Funding acquisition (lead); Project administration (equal); Resources (equal). Karem Lopez‐Hervas: Data curation (supporting); Formal analysis (equal); Methodology (equal); Software (equal); Supervision (supporting). Rebecca D. Tarvin: Conceptualization (supporting); Data curation (equal); Formal analysis (supporting); Methodology (supporting); Resources (supporting); Software (supporting); Writing‐review & editing (supporting). Muhammad Saeed: Data curation (supporting); Project administration (supporting). Daniel I. Bolnick: Conceptualization (lead); Data curation (lead); Project administration (lead); Resources (lead); Supervision (lead); Writing‐review & editing (equal). David C. Cannatella: Conceptualization (lead); Data curation (lead); Formal analysis (lead); Methodology (equal); Resources (supporting); Software (supporting); Supervision (lead); Validation (lead); Writing‐review & editing (equal).

Supporting information

Tables S1‐S6

ACKNOWLEDGMENTS

We thank the Higher Education Commission, Pakistan, for providing funds under research project No. 20‐3170/NRPU/R&D/13/564 and International Research Support Initiative Program for sponsoring the six months training for A. Akram at University of Texas, Austin. A portion of this material is based upon research performed by D.C.C. while serving at the National Science Foundation. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the D.C.C. and do not necessarily reflect the views of the National Science Foundation.

APPENDIX 1.

Details of samples used in the phylogenetic analysis, as well as in genetic distances

Genus Species Gene Voucher No. GenBank accession No. Country/locality Lat Long Publication
Ansonia longidigita 16S VUB 0666 FJ882796 Malaysia: Borneo Bocxlaer et al. (2009)
Ingerophrynus divergens 16S VUB 0602 FJ882802 Malaysia: Borneo Bocxlaer et al. (2009)
Adenomus kelaartii 16S VUB 0171 FJ882780 Sri Lanka Bocxlaer et al. (2009)
Pedostibes tuberculosus 16S SDB 4691 FJ882793 India: Western Ghats Bocxlaer et al. (2009)
Bufotes cf. surdus 16S ZMMSU A‐4027 FJ882810 Iran Bocxlaer et al. (2009)
Bufotes cf. pewzowi 16S NP B‐4‐1 FJ882811 Uzbekistan Bocxlaer et al. (2009)
Bufotes cf. variabilis 16S VUB 1813 FJ882812 Turkey Bocxlaer et al. (2009)
Bufotes viridis 16S NP B‐2‐1 FJ882813 Greece Bocxlaer et al. (2009)
Xanthophryne koynayensis 16S SDB 2004‐012 FJ882782 India: Western Ghats Bocxlaer et al. (2009)
Duttaphrynus melanostictus 16S VUB 0052 FJ882791 India: Western Ghats Bocxlaer et al. (2009)
Duttaphrynus sp. 16S SDB 927 FJ882792 India: Western Ghats Bocxlaer et al. (2009)
Duttaphrynus brevirostris 16S SDB 4714 FJ882786 India: Western Ghats Bocxlaer et al. (2009)
Duttaphrynus atukoralei 16S VUB 0101 FJ882835 Sri Lanka Bocxlaer et al. (2009)
Duttaphrynus dhufarensis 16S CAS 227584 FJ882837 Oman Bocxlaer et al. (2009)
Duttaphrynus hololius 16S SDB 4240 FJ882781 India Bocxlaer et al. (2009)
Duttaphrynus parietalis 16S SDB 10100 FJ882784 India: Western Ghats Bocxlaer et al. (2009)
Duttaphrynus scaber 16S SDB 532 FJ882785 India: Western Ghats Bocxlaer et al. (2009)
Duttaphrynus stuarti 16S CAS 221485 FJ882788 Myanmar Bocxlaer et al. (2009)
Duttaphrynus crocus 16S CAS 220193 FJ882789 Myanmar Bocxlaer et al. (2009)
Duttaphrynus himalayanus 16S SDB4566 FJ882790 India Bocxlaer et al. (2009)
Duttaphrynus himalayanus 16S DH3 KY000450 India: Uttarakhand 29.868236 79.310841 Bahuguna et al. (2017) Unpublished
Duttaphrynus melanostictus 16S DM2 KY000456 India: Uttarakhand 30.324483 78.102409 Bahuguna et al. (2017) Unpublished
Duttaphrynus melanostictus 16S KIZ‐95L001 AF160790 China: Yunnan Pingbian Co 22.790772 103.90988 Liu et al. (2000)
Duttaphrynus melanostictus 16S ROM 33162 AF160791 Vietnam: Gia Lia, Koh Rong 11.190175 103.86354 Liu et al. (2000)
Duttaphrynus melanostictus 16S 1 EU071740 India: Pune, Maharashtra 18.576642 74.049723 Shouche and Ghate (2007) Unpublished
Duttaphrynus sp. 16S SDB 4594 FJ882839 India Bocxlaer et al. (2009)
Duttaphrynus stomaticus 16S 27 EU071742 India Shouche and Ghate (2007) Unpublished
Duttaphrynus stomaticus 16S CCMB D02_B247 KT991344 India Chandramouli et al. (2016)
Duttaphrynus stomaticus 16S SDB 4020 FJ882787 India: Western Ghats Bocxlaer et al. (2009)
Duttaphrynus melanostictus 16S WLM:DM296164 MW885769 Pakistan: Kotli Sattian, Nalari 33.81554079 73.47496593 This study
Duttaphrynus melanostictus 16S WLM:DM303174 MW885770 Pakistan: Islamabad, Bani Gala 33.719659 73.164594 This study
Duttaphrynus stomaticus 16S WLM:DS48176 MW885771 Pakistan: Islamabad, Bani Gala 33.72553314 73.19205455 This study
Duttaphrynus stomaticus 16S WLM:DS2361610 MW885776 Pakistan: Taxila: Bahtar road 33.75005567 72.71150025 This study
Duttaphrynus stomaticus 16S WLM:DS46168 MW885774 Pakistan: Taxila: UET 33.75794448 72.82491694 This study
Duttaphrynus stomaticus 16S WLM:DS236168 MW885772 Pakistan: Rawalpindi: Chakri 33.47833084 72.93900073 This study
Duttaphrynus stomaticus 16S WLM:DS236169 MW885773 Pakistan: Kahuta: Baroothi 33.53938907 73.50488902 This study
Duttaphrynus stomaticus 16S WLM:DS46169 MW885775 Pakistan: Gujar Khan: Manghot 33.2755836 73.12263851 This study
Uperodon systoma 16S 1151UpeSys EF017960 India Bocxlaer et al. (2006)
Kaloula pulchra 16S MBM‐USNMFS36482 MG935853 Myanmar: Kandawgyi National Gardens 21.9931 96.4713 Mulcahy et al. (2018)
Microhyla fissipes 16S KUHE32943 AB201185 China: Anhui, Huangshan 30.034532 118.0078 Matsui et al. (2005)
Microhyla mukhlesuri 16S SDBDU 2010.1332 MH549575 India: Mizoram 22.53 92.89 Garg et al. (2018)
Microhyla mukhlesuri 16S Not mentioned JQ621935 Thailand 13.855145 100.76215 Gao and Fan (2012). Unpublished
Microhyla mukhlesuri 16S KIZHERP0138 JX678905 Vietnam 19.991547 104.13737 Li et al. (2012)
Microhyla mukhlesuri 16S TZ52 AF285202 Vietnam 17.650995 106.01649 Ziegler, T. (2000). Unpublished thesis
Microhyla mukhlesuri 16S 16SMicrohyla_ornata AF215373 Madagascar −18.60814 46.61644 Vences (2000). Unpublished thesis
Microhyla chakrapanii 16S not preserved MH807389 India: Andaman Islands 12.565535 92.80566 Garg et al. (2019)
Microhyla mymensinghensis 16S SDBDU 2015.2904 MH549590 India: West Bengal 22.43 88.38 Garg et al. (2018)
Microhyla rubra 16S SDBDU 2014.2829 MH807420 India: Tamil Nadu, Meenakshipuram 10.631822 76.86593 Garg et al. (2019)
Microhyla rubra 16S not preserved AB201192 India; Karnataka 15.587753 75.863205 Matsui et al. (2005)
Microhyla taraiensis 16S JRK201525 KY655952 Nepal: Mechi 27.152954 87.886133 Khatiwada et al. (2017)
Microhyla taraiensis 16S JRK201527 KY655954 East Nepal 29.10608 82.246342 Khatiwada et al. (2017)
Microhyla taraiensis 16S JRK201526 KY655953 East Nepal 29.326619 81.916752 Khatiwada et al. (2017)
Microhyla ornata 16S SDBDU 2008.1720 MH549636 India: Tamil Nadu, Coimbatore 11.005298 76.942513 Garg et al. (2018)
Microhyla ornata 16S ZSIK‐A9119 AB201188 India: Karnataka, Dharwad 15.464739 74.98685 Matsui et al. (2005)
Microhyla ornata 16S RGCB15059 KP072794 India: Pulpally, Wayanad District, Kerala 11.7902 76.181561 Howlader et al. (2015a)
Microhyla ornata 16S SDBDU 2015.2898 MH549619 India: Andhra Pradesh Maredumilli 17.66 82.22 Garg et al. (2018)
Microhyla ornata 16S DZ 1432 MH807404 Sri Lanka: Kukulamalpotha 7.412246 81.159342 Garg et al. (2019)
Microhyla ornata 16S DZ 1427 MH807402 Sri Lanka: Makandura 7.323117 79.977009 Garg et al. (2019)
Microhyla ornata 16S SDBDU 2008.1958 MH549630 India: Tamil Nadu, Keeriparai 8.395153 77.412114 Garg et al. (2018)
Microhyla ornata 16S DZ 1104 MH807400 Sri Lanka: Puttalam 8.043706 79.835967 Garg et al. (2019)
Microhyla nilphamariensis 16S IABHU<JPN>:4213 LC090056 Bangladesh: Nilphamari, Barua, Berakhuti 25.886874 88.945658 Hasan et al. (2015)
Microhyla nilphamariensis 16S Morn‐Bd1 AB530537 Bangladesh: Dinajpur, Parbatipur 25.655386 88.912375 Hasan et al. (2012)
Microhyla nilphamariensis 16S Morn‐Bd3 AB530539 Bangladesh: Dinajpur, Parbatipur 25.653732 88.918973 Hasan et al. (2012)
Microhyla nilphamariensis 16S Morn‐Bd2 AB530538 Bangladesh: Dinajpur, Parbatipur 25.657774 88.916044 Hasan et al. (2012)
Microhyla nilphamariensis 16S ABHU<JPN>:4212 LC090055 Bangladesh: Nilphamari, Barua, Berakhuti 25.887231 88.947224 Hasan et al. (2015)
Microhyla nilphamariensis 16S MHLB00206 LC090057 Bangladesh: Nilphamari, Barua, Berakhuti 25.886102 88.944821 Hasan et al. (2015)
Microhyla nilphamariensis 16S SDBDU 2015.2905 MH549592 India: Assam, Barpeta, Mandia 26.268615 90.960971 Garg et al. (2018)
Microhyla nilphamariensis 16S MZH‐2362 KP072789 Bangladesh: Saidpur 25.781567 88.902439 Howlader et al. (2015a)
Microhyla nilphamariensis 16S ADWII_DT1 MH549616 India: Uttarakhand, Tuntowala 30.279222 78.004864 Garg et al. (2018)
Microhyla nilphamariensis 16S ADWII_M03 MH549618 India: Uttar Pradesh, Rajghat 28.241659 78.361208 Garg et al. (2018)
Microhyla nilphamariensis 16S MZH‐2363 KP072790 Bangladesh: Saidpur 25.79115 88.889736 Howlader et al. (2015a)
Microhyla nilphamariensis 16S M1_2_16SF‐A09.ab1 MN952999 Laterite Plateau of Western India 23.868377 72.611802 Mudke (2020). Unpublished
Microhyla nilphamariensis 16S M1_3_16SF‐B09.ab1 MN953000 Laterite Plateau of Western India 24.056953 72.810493 Mudke (2020). Unpublished
Microhyla nilphamariensis 16S M1_1_16SF‐H08.ab1 MN952998 Laterite Plateau of Western India 19.559477 73.761439 Mudke (2020). Unpublished
Microhyla nilphamariensis 16S SDBDU 2004.4507 MH549606 India: Maharashtra, Koyna 19.636949 73.170211 Garg et al. (2018)
Microhyla nilphamariensis 16S JRK201514 KY655939 Nepal: Jhuwani, district Chitwan, Narayani 27.591617 84.525397 Khatiwada et al. (2017)
Microhyla nilphamariensis 16S JRK201529 KY655951 Nepal: Hangdewa, Taplujung district, Mechi province 27.378704 87.700172 Khatiwada et al. (2017)
Microhyla nilphamariensis 16S JRK201501 KY655926 Nepal: Jhuwani, district Chitwan, Narayani province 27.594508 84.522865 Khatiwada et al. (2017)
Microhyla nilphamariensis 16S JRK201523 KY655948 Nepal: Jhuwani, district Chitwan, Narayani province 27.588042 84.529431 Khatiwada et al. (2017)
Microhyla nilphamariensis 16S JRK201518 KY655943 Nepal: Jhuwani, district Chitwan, Narayani province 27.58595 84.526341 Khatiwada et al. (2017)
Microhyla nilphamariensis 16S JRK201524 KY655949 Nepal: Jhuwani, district Chitwan, Narayani province 27.584894 84.529398 Khatiwada et al. (2017)
Microhyla nilphamariensis 16S WLM:MN236165 MW886319 Pakistan: Rawalpindi: Misrial 33.190561 72.808795 This study
Microhyla nilphamariensis 16S WLM:MN236163 MW886320 Pakistan: Rawalpindi, Chakri 33.51785089 72.97597999 This study
Microhyla nilphamariensis 16S WLM:MN46164 MW886321 Pakistan: Murree, Shangrila 33.856779 73.373913 This study
Microhyla nilphamariensis 16S WLM:MN236164 MW886322 Pakistan: Rawalpindi: Girja road 33.557083 72.995833 This study
Rana catesbeiana 16S NIBRAM0000100407 JQ815323 Korea: Gyeongsangnam‐do Jinju‐si Jeongchon‐myeon Jeong et al. (2013)
Rana asiatica 16S Asia. R AB058884 Russia: Kirghizia Sumida et al. (2003)
Quasipaa shini 16S XJW‐LS‐001 KF199148 China: Longsheng, Guangxi Zhang et al. (2018)
Quasipaa boulengeri 16S JFW‐TS‐002 KF199152 China: Tongshan, Hubei Zhang et al. (2018)
Quasipaa exilispinosa 16S XJW‐WYS‐001 KF199151 China: Wuyishan, Fujian Zhang et al. (2018)
Quasipaa jiulongensis 16S JLJW‐WYS‐002 KF199149 China: Wuyishan, Fujian Zhang et al. (2018)
Nanorana cf. rarica 16S A1961/13_NME MN012202 Central Himalaya 29.51 82.09 Hofmann et al. (2019)
Nanorana cf. rarica 16S A1970/13_NME MN012203 Central Himalaya 29.51 82.09 Hofmann et al. (2019)
Nanorana cf. rarica 16S A2015/13_NME MN012204 Central Himalaya 29.51 82.09 Hofmann et al. (2019)
Nanorana cf. rarica 16S A1960/13_NME MN012207 Central Himalaya 29.36 82.2 Hofmann et al. (2019)
Nanorana cf. rarica 16S A2019/13_NME MN012205 Central Himalaya 29.51 82.09 Hofmann et al. (2019)
Nanorana cf. rarica 16S A1965/13_NME MN012206 Central Himalaya 29.513 82.092 Hofmann et al. (2019)
Nanorana sp. 16S R5_12_NME MN012169 Central Himalaya 28.513 83.033 Hofmann et al. (2019)
Nanorana sp. 16S SH070556_NME MN012172 Central Himalaya 28.622 83.662 Hofmann et al. (2019)
Nanorana sp. 16S Ne13_13_NME MN012194 Central Himalaya 27.576 86.514 Hofmann et al. (2019)
Nanorana sp. 16S Ne1_13_NME MN012195 Central Himalaya 27.689 86.731 Hofmann et al. (2019)
Nanorana sp. 16S Ne2_13_NME MN012196 Central Himalaya 27.689 86.731 Hofmann et al. (2019)
Nanorana sp. 16S Ne9_13_NME MN012197 Central Himalaya 27.671 86.765 Hofmann et al. (2019)
Nanorana sp. 16S SH080545_NME MN012187 Central Himalaya 27.703 86.337 Hofmann et al. (2019)
Nanorana sp. 16S SH080593_NME MN012180 Central Himalaya 27.686 86.252 Hofmann et al. (2019)
Nanorana sp. 16S R1_09_13_NME MN012174 Central Himalaya 28.38 84.065 Hofmann et al. (2019)
Nanorana sp. 16S R2_09_13_NME MN012175 Central Himalaya 28.38 84.065 Hofmann et al. (2019)
Nanorana sp. 16S SH070510_NME MN012177 Central Himalaya 28.074 85.302 Hofmann et al. (2019)
Nanorana sp. 16S SH080551_NME MN012190 Central Himalaya 27.703 86.337 Hofmann et al. (2019)
Nanorana sp. 16S SH080592_NME MN012179 Central Himalaya 27.686 86.252 Hofmann et al. (2019)
Nanorana sp. 16S SH080594_NME MN012181 Central Himalaya 27.686 86.252 Hofmann et al. (2019)
Nanorana sp. 16S SH080570_NME MN012182 Central Himalaya 27.697 86.275 Hofmann et al. (2019)
Nanorana sp. 16S SH080571_NME MN012183 Central Himalaya 27.697 86.275 Hofmann et al. (2019)
Nanorana sp. 16S SH080572_NME MN012184 Central Himalaya 27.697 86.275 Hofmann et al. (2019)
Nanorana sp. 16S SH080553_NME MN012185 Central Himalaya 27.718 86.311 Hofmann et al. (2019)
Nanorana sp. 16S SH080555_NME MN012186 Central Himalaya 27.718 86.311 Hofmann et al. (2019)
Nanorana sp. 16S SH080546_NME MN012188 Central Himalaya 27.703 86.337 Hofmann et al. (2019)
Nanorana sp. 16S SH080548_NME MN012189 Central Himalaya 27.703 86.337 Hofmann et al. (2019)
Nanorana sp. 16S SH080552_NME MN012191 Central Himalaya 27.703 86.337 Hofmann et al. (2019)
Nanorana sp. 16S SH080512_NME MN012192 Central Himalaya 27.595 86.34 Hofmann et al. (2019)
Nanorana sp. 16S SH080591_NME MN012178 Central Himalaya 27.686 86.252 Hofmann et al. (2019)
Nanorana sp. 16S SH080523_NME MN012193 Central Himalaya 27.694 86.351 Hofmann et al. (2019)
Nanorana parkeri 16S SYNU‐1706031 MH315959 China Qi et al. (2019). Unpublished
Nanorana parkeri 16S KizYP205 DQ118498 China Hu et al. (2006). Unpublished
Nanorana parkeri 16S TP3_06_NME MN012136 Transhimalaya and adjacent parts of the Tibetan Plateau 29.578 90.435 Hofmann et al. (2019)
Nanorana parkeri 16S TP7_06_NME MN012155 Transhimalaya and adjacent parts of the Tibetan Plateau 31.166 92.061 Hofmann et al. (2019)
Nanorana parkeri 16S N7_06_NME MN012126 Transhimalaya and adjacent parts of the Tibetan Plateau 29.589 90.214 Hofmann et al. (2019)
Nanorana parkeri 16S TP5_06_NME MN012153 Transhimalaya and adjacent parts of the Tibetan Plateau 31.166 92.061 Hofmann et al. (2019)
Nanorana parkeri 16S CAS805L MN012141 Transhimalaya and adjacent parts of the Tibetan Plateau 30.09 90.48 Hofmann et al. (2019)
Nanorana ventripunctata 16S KizYP200 DQ118502 China Hu et al. (2006). Unpublished
Nanorana ventripunctata 16S KizYP201 DQ118503 China Hu et al. (2006). Unpublished
Nanorana ventripunctata 16S SH050538_NME MN012208 (sub) alpine parts of the eastern margin of the Tibetan Plateau 27.788 99.855 Hofmann et al. (2019)
Nanorana ventripunctata 16S SH050539_NME MN012209 (sub) alpine parts of the eastern margin of the Tibetan Plateau 27.788 99.855 Hofmann et al. (2019)
Nanorana pleskei 16S KQ20_14_NME MN012165 (sub) alpine parts of the eastern margin of the Tibetan Plateau 30.377 101.675 Hofmann et al. (2019)
Nanorana pleskei 16S KQ9_14_NME MN012166 (sub) alpine parts of the eastern margin of the Tibetan Plateau 30.377 101.675 Hofmann et al. (2019)
Nanorana pleskei 16S KQ17_14_NME MN012162 (sub) alpine parts of the eastern margin of the Tibetan Plateau 30.377 101.675 Hofmann et al. (2019)
Nanorana pleskei 16S CAS201 MN012167 (sub)alpine parts of the eastern margin of the Tibetan Plateau 33.467 102.75 Hofmann et al. (2019)
Nanorana pleskei 16S CAS202 MN012168 (sub)alpine parts of the eastern margin of the Tibetan Plateau 33.467 102.75 Hofmann et al. (2019)
Nanorana pleskei 16S KizYP203 DQ118504 China Hu et al. (2006). Unpublished
Nanorana pleskei 16S KizYP204 DQ118505 China Hu et al. (2006). Unpublished
Nanorana yunnanensis 16S KF199150 China Zhang and Yu (2017). Unpublished
Nanorana taihangnica 16S KJ569109 China Chen et al. (2015)
Allopaa hazarensis 16S WLM:AH265163 MW898152 Pakistan: Murree: Parhana 33.84322266 73.46941712 This study
Allopaa hazarensis 16S WLM:AH461611 MW898153 Pakistan: Murree, Bastal Mor (Shangrila Park) 33.8608605 73.37946601 This study
Allopaa hazarensis 16S WLM:AH305164 MW898154 Pakistan: Murree, Patriata road 33.86869227 73.4672 This study
Allopaa hazarensis 16S WLM:AH305168 MW898155 Pakistan: Murree: Patriata road 33.86869227 73.4672 This study
Allopaa hazarensis 16S WLM:AH265161 MW898156 Pakistan: Murree: Bell Garan 33.88477419 73.50041681 This study
Allopaa hazarensis 16S AH2651611 MW898157 Pakistan: Murree: Bell Garan 33.88477419 73.50041681 This study
Allopaa hazarensis 16S WLM:AH299171 MW898158 Pakistan: Murree: Murree expressway 33.84833345 73.42944468 This study
Allopaa hazarensis 16S WLM:AH299174 MW898159 Pakistan: Murree: Parhana 33.84324964 73.46955605 This study
Allopaa hazarensis 16S WLM:AH305167 MW898160 Pakistan: Murree: Aliyot 33.90124184 73.43383471 This study
Allopaa hazarensis 16S WLM:AH296163 MW898161 Pakistan: Murree: Mall road 33.9877782 73.49277785 This study
Allopaa hazarensis 16S WLM:AH305162 MW898162 Pakistan: Murree: Jhika Gali 33.91422267 73.4167499 This study
Allopaa hazarensis 16S WLM:AH28516t1 MW898163 Pakistan: Murree: Army dog center 33.91430535 73.39388838 This study
Allopaa hazarensis 16S WLM:AH305165 MW898164 Pakistan: Murree: Jhika Gali 33.91422267 73.39388838 This study
Allopaa hazarensis 16S WLM:AH299175 MW898165 Pakistan: Kotli Sattian: Kyonian 33.75205517 73.49188943 This study
Allopaa hazarensis 16S WLM:AH289174 MW898166 Pakistan: Kotli Sattian: New Koreana 33.82288846 73.52886145 This study
Allopaa hazarensis 16S WLM:AH299173 MW898167 Pakistan: Kotli Sattian: Kyonian 33.75205517 73.49188943 This study
Allopaa hazarensis 16S WLM:AH289173 MW898168 Pakistan: Kotli Sattian: Nalari 33.81372258 73.50108327 This study
Allopaa hazarensis 16S WLM:AH289175 MW898169 Pakistan: Kotli Sattian: Nalari 33.81372258 73.50108327 This study
Allopaa hazarensis 16S WLM:AH252171 MW898170 Pakistan: Murree: Chaka Begwal 33.797 73.37674988 This study
Allopaa hazarensis 16S WLM:AH296161 MW898171 Pakistan: Murree: Angoori 33.81458356 73.36883365 This study
Allopaa hazarensis 16S WLM:AH296162 MW898172 Pakistan: Murree: Angoori police station 33.79941651 73.35383292 This study
Nanorana cf. polunini 16S R3_09_13_NME MN012087 Central Himalaya 28.38 84.065 Hofmann et al. (2019)
Nanorana cf. blanfordii 16S JS040534_NME MN012071 Central Himalaya 27.617 87.233 Hofmann et al. (2019)
Nanorana cf. blanfordii 16S JS060520_NME MN012073 Central Himalaya 27.173 87.421 Hofmann et al. (2019)
Nanorana cf. blanfordii 16S JS060515_NME MN012074 Central Himalaya 27.214 87.463 Hofmann et al. (2019)
Nanorana cf. blanfordii 16S JS060508_NME MN012075 Central Himalaya 27.413 87.734 Hofmann et al. (2019)
Nanorana cf. blanfordii 16S JS040529_NME MN012067 Central Himalaya 27.617 87.233 Hofmann et al. (2019)
Nanorana cf. blanfordii 16S JS040532_NME MN012069 Central Himalaya 27.617 87.233 Hofmann et al. (2019)
Nanorana cf. blanfordii 16S JS040531_NME MN012068 Central Himalaya 27.617 87.233 Hofmann et al. (2019)
Nanorana cf. blanfordii 16S JS040535_NME MN012072 Central Himalaya 27.617 87.233 Hofmann et al. (2019)
Nanorana cf. blanfordii 16S JS040533_NME MN012070 Central Himalaya 27.617 87.233 Hofmann et al. (2019)
Nanorana cf. polunini 16S R15_12_NME MN012082 Central Himalaya 28.502 83.129 Hofmann et al. (2019)
Nanorana sp. 16S 2Pul_RAS MN012200 NW Himalaya, (Himachal Pradesh) 31.996 77.448 Hofmann et al. (2019)
Nanorana sp. 16S 782_RAS MN012201 NW Himalaya, (Himachal Pradesh) 31.261 77.45 Hofmann et al. (2019)
Nanorana sp. 16S 2Bhan_RAS MN012199 NW Himalaya, (Himachal Pradesh) 32.873 75.858 Hofmann et al. (2019)
Nanorana vicina 16S WLM:NV28917 MW898173 Pakistan: Murree: Surasi 33.86869227 73.46719617 This study
Nanorana vicina 16S WLM:NV289171 MW898174 Pakistan: Murree: Bell Garan 33.88477419 73.50041681 This study
Nanorana vicina 16S WLM:NV299172 MW898175 Pakistan: Murree expressway 33.84833345 73.42944468 This study
Nanorana vicina 16S WLM:NV265166 MW898176 Pakistan: Murree: Mall road 33.9877782 73.49277785 This study
Nanorana vicina 16S WLM:NV289172 MW898177 Pakistan: Murree, Parhana 33.84324964 73.46955605 This study
Nanorana vicina 16S WLM:NV1310171 MW898178 Pakistan: Murree: Jhika Gali 33.91422267 73.4167499 This study
Nanorana vicina 16S WLM:NV26516t3 MW898179 Pakistan: Kotli Sattian: New Koreana 33.82288846 73.52886145 This study
Nanorana vicina 16S WLM:NV265164 MW898180 Pakistan: Kotli Sattian: Ratta Kas 33.72438924 73.45886097 This study
Nanorana vicina 16S WLM:NV265167 MW898181 Pakistan: Murree: Angoori (Police station) 33.79941651 73.35383292 This study
Nanorana cf. ercepeae 16S A2017/13_NME MN012076 Central Himalaya 29.374 81.137 Hofmann et al. (2019)
Nanorana cf. ercepeae 16S A5_12_NME MN012080 Central Himalaya 28.857 82.976 Hofmann et al. (2019)
Nanorana cf. rostandi 16S R17_12_NME MN012101 Central Himalaya 28.519 83.264 Hofmann et al. (2019)
Nanorana cf. rostandi 16S SH070550_NME MN012102 Central Himalaya 28.683 83.591 Hofmann et al. (2019)
Nanorana sp. 16S A1966/13_NME MN012198 Central Himalaya (Chainpur Himal) 29.374 81.137 Hofmann et al. (2019)
Nanorana cf. polunini 16S SH070507_NME MN012084 Central Himalaya 28.06 85.294 Hofmann et al. (2019)
Nanorana cf. polunini 16S SH070509_NME MN012085 Central Himalaya 28.08 85.295 Hofmann et al. (2019)
Nanorana cf. polunini 16S SH070531_NME MN012086 Central Himalaya 27.965 85.472 Hofmann et al. (2019)
Nanorana liebigii 16S A17_12_NME MN012104 Central Himalaya 28.519 83.264 Hofmann et al. (2019)
Nanorana liebigii 16S SH070515_NME MN012106 Central Himalaya 28.099 85.317 Hofmann et al. (2019)
Nanorana liebigii 16S SH080506_NME MN012108 Central Himalaya 27.609 86.295 Hofmann et al. (2019)
Nanorana liebigii 16S Ne16_13_NME MN012115 Central Himalaya 27.584 86.411 Hofmann et al. (2019)
Nanorana liebigii 16S JS040512_NME MN012119 Central Himalaya 27.631 87.224 Hofmann et al. (2019)
Nanorana liebigii 16S JS060503_NME MN012124 Central Himalaya 27.407 87.752 Hofmann et al. (2019)
Nanorana liebigii 16S JS060511_NME MN012122 Central Himalaya 27.296 87.535 Hofmann et al. (2019)
Nanorana liebigii 16S KIZ‐RDXZL1 DQ118499 Central Himalaya 27.485 88.907 Hofmann et al. (2019)
Nanorana liebigii 16S 2003.308 KR827956 Nepal: Pangum Grosjean et al. (2015)
Nanorana liebigii 16S SH0805109_NME MN012107 Central Himalaya 27.673 86.24 Hofmann et al. (2019)
Nanorana liebigii 16S Ne12_13_NME MN012117 Central Himalaya 27.584 86.594 Hofmann et al. (2019)
Nanorana liebigii 16S Ne10_13_NME MN012118 Central Himalaya 27.586 86.635 Hofmann et al. (2019)
Sphaerotheca pluvialis 16S AF249042 Sri Lanka Bossuyt and Milinkovitch (2000)
Sphaerotheca dobsonii 16S Sdob‐In AB530608 India: Bajipe, Mangalore 12.9804 74.883618 Hasan et al. (2014)
Sphaerotheca dobsonii 16S 16S‐dob AB277305 India: Bajipe 12.992151 74.878932 Kotaki et al. (2008)
Sphaerotheca dobsonii 16S INHER Amphibia‐86 KY215970 India: Tamhini, Pune, Maharashtra 18.477 73.427 Padhye et al. (2017)
Sphaerotheca dobsonii 16S WILD‐16‐AMP‐651 KY215971 India: Devi Hasool, Maharashtra 16.742 73.432 Padhye et al. (2017)
Sphaerotheca breviceps 16S BNHS 6005 KY215977 India: Tranquebar (Tharangambadi), Tamil Nadu 11.062 79.813 Padhye et al. (2017)
Sphaerotheca breviceps 16S WILD‐16‐AMP‐645 KY215978 India: Tranquebar (Tharangambadi), Tamil Nadu 11.062 79.813 Padhye et al. (2017)
Sphaerotheca magadha 16S ZSI/WRC/2179 MK694738 India: Nawadih village, Koderma, Jharkhand 24.417985 85.468 Prasad et al. (2019)
Sphaerotheca breviceps 16S WILD‐16‐AMP‐647 KY215976 India: Maithon, Jharkhand 23.776 86.809 Padhye et al. (2017)
Sphaerotheca breviceps 16S BNHS 6006 KY215975 India: Maithon, Jharkhand 23.776 86.809 Padhye et al. (2017)
Sphaerotheca rolandae 16S Sptr GU191122 India: Rajasthan Sharma et al. (2009). Unpublished
Sphaerotheca pashchima 16S WILD‐16‐AMP‐644 KY215994 India: Maharashtra, Pune, Tamhini 18.477 73.427 Padhye et al. (2017)
Sphaerotheca pashchima 16S WILD‐16‐AMP‐642 KY215991 India: Maharashtra, Saswad‐Waghapur Road, Ambodi village 18.308 74.083 Padhye et al. (2017)
Sphaerotheca pashchima 16S ZSI‐WRC A/1549 KY215980 India: Karnataka, Yellapur‐Haliyal Road 15.16 74.759 Padhye et al. (2017)
Sphaerotheca pashchima 16S BNHS 6013 KY215983 India: Maharashtra, Raigad District, Kolad 18.404 73.321 Padhye et al. (2017)
Sphaerotheca pashchima 16S BNHS 6018 KY215988 India: Gujarat, Dang District, Waghai‐Ahwa road 20.709 73.709 Padhye et al. (2017)
Sphaerotheca pashchima 16S WILD‐16‐AMP‐641 KY215990 India: Maharashtra, Ahmednagar District, Karjat, near Rehekuri WLS 18.598 74.974 Padhye et al. (2017)
Sphaerotheca pashchima 16S BNHS 6017 KY215987 India: Maharashtra, Chinchli to Salher fort road 20.747 73.973 Padhye et al. (2017)
Sphaerotheca pashchima 16S WILD‐16‐AMP‐643 KY215993 India: Gujarat, Veghai Road, Ahwa‐Dang 20.764 73.676 Padhye et al. (2017)
Sphaerotheca pashchima 16S BNHS 6012 KY215981 India: Karnataka, Near Yellapur 14.98 74.731 Padhye et al. (2017)
Sphaerotheca pashchima 16S ZSI‐WRC A/1550 KY215982 India: Karnataka, Near Yellapur 14.98 74.731 Padhye et al. (2017)
Sphaerotheca pashchima 16S SbHR25HNBGU KX815437 India 29.91889 78.12618 Chowdhary et al. (2017). Unpublished
Sphaerotheca pashchima 16S Sb31HNBGU KX815435 India 30.28476 77.97365 Chowdhary et al. (2017). Unpublished
Sphaerotheca pashchima 16S SbSG17HNBGU KX815440 India 30.22177 78.78434 Chowdhary et al. (2017). Unpublished
Sphaerotheca pashchima 16S WLM:SP46163 MW898191 Pakistan: Rawalpindi: Chakri 33.553389 73.015766 This study
Sphaerotheca pashchima 16S WLM:SP236166 MW898192 Pakistan: Islamabad: River Korang (Way to Angoori) 33.78342224 73.26690085 This study
Sphaerotheca pashchima 16S WLM:SP177161 MW898193 Pakistan: Kahuta: Bandhya 33.62661116 73.47552765 This study
Sphaerotheca pashchima 16S WLM:SP177162 MW898194 Pakistan: Rawalpindi: Adiala Road 33.50751564 73.03706598 This study
Sphaerotheca pashchima 16S SbJM1HNBGU KX815439 India 30.55444 79.56635 Chowdhary et al. (2017). Unpublished
Fejervarya cancrivora 16S AF346810 Indonesia: Java Veith et al. (2001)
Fejervarya cancrivora 16S FC‐3 AB570273 Indonesia: Malang, East Java Kurniawan et al. (2014)
Fejervarya limnocharis 16S TZ25 AF285211 North Vietnam: Vietnam Ziegler (2000). Unpublished thesis
Fejervarya limnocharis 16S MVZ226347 EU979847 Vietnam: Tam Dao, Vinh Phu Prov. 21.406484 105.6417 Che et al. (2009)
Fejervarya limnocharis 16S FL‐1 AB570262 Indonesia: Padang, West Sumatra −0.943817 100.41878 Kurniawan et al. (2014)
Fejervarya limnocharis 16S FL‐4 AB570265 Indonesia: Rokan Hilir, Riau, Sumatra 1.763345 100.75021 Kurniawan et al. (2014)
Fejervarya limnocharis 16S JQ621940 China: Yunnan (south west china) Gao and Fan (2012). Unpublished
Fejervarya limnocharis 16S 1999.5721 KR827740 Vietnam: Lao Cai, Sapa 22.335302 103.84612 Grosjean et al. (2015)
Fejervarya limnocharis 16S Okin(2) AB070734 Japan: Okinawa 26.388602 127.78929 Sumida et al. (2002)
Fejervarya limnocharis 16S 16SF15 KU840567 China: Long Quan, Sichuan prov. −0.716667 112.44245 Goutte et al. (2016)
Fejervarya limnocharis 16S H001 HQ226055 Taiwan Chang and Liu (2010). Unpublished
Fejervarya limnocharis 16S H006 HQ226060 Taiwan Chang and Liu (2010). Unpublished
Minervarya rufescens 16S SDBDU 2015.2882 KY447323 India: Pozhuthana, Kerala 11.590328 76.02067 Garg and Biju (2017)
Minervarya greenei 16S AB488891 Sri Lanka: Hakgala 6.918789 80.831133 Kotaki et al. (2010)
Minervarya kudremukhensis 16S AB488898 India: Kudremukh (Karnataka) 13.222713 75.250694 Kotaki et al. (2010)
Minervarya sahyadris 16S Fsah‐In2 AB530605 India: Aralam (Kerala) 11.970321 75.800625 Hasan et al. (2014)
Minervarya caperata 16S AB488894 India: Mudigere (Karnataka) 13.132451 75.640472 Kotaki et al. (2010)
Minervarya asmati 16S FaCSE_17 KP849815 Bangladesh: Dhaka 23.742528 90.453325 Howlader et al. (2016)
Minervarya asmati 16S HJZG‐04 MG010390 Bangladesh Jahan et al. (2018). Unpublished
Minervarya granosa 16S BNHS 4652 AB355839 India: Western Ghats, Madikeri 10.246409 76.827714 Kuramoto et al. (2007)
Minervarya granosa 16S AB488895 India: Mudigere (Karnataka) 13.131135 75.64207 Kotaki et al. (2010)
Minervarya syhadrensis 16S AB488892 Sri Lanka: Hakgala 6.918789 80.831063 Kotaki et al. (2010)
Minervarya syhadrensis 16S WHT2665 AY141843 Sri Lanka Meegaskumbura et al. (2002)
Minervarya pierrei 16S FSP 04 MK635483 Bangladesh Jahan et al. (2019). Unpublished
Minervarya pierrei 16S F1DSE_14 KP849816 Bangladesh Howlader et al. (2016)
Minervarya pierrei 16S Fsp.S‐Bd1 AB530509 Bangladesh: Mymensingh, Char Nilokhia 24.08494 90.8911 Hasan et al. (2012)
Minervarya pierrei 16S FSP 02 MK635481 Bangladesh Jahan et al. (2019). Unpublished
Minervarya pierrei 16S AB488888 Nepal: Chitwan 27.533841 84.436593 Kotaki et al. (2010)
Minervarya syhadrensis 16S IN023 AY882955 India: Kolkata: West Bengal 22.571807 88.427181 Tandon et al. (2005). Unpublished.
Minervarya pierrei 16S Fsp.S‐Bd2 AB530510 Bangladesh: Cox' s Bazar, Laboni point 21.438741 92.016288 Hasan et al. (2012)
Minervarya pierrei 16S WLM:MP48171 MW898182 Pakistan: Taxila: Margalla Hills National Park 33.731587 72.94793 This study
Minervarya pierrei 16S WLM:MP48173 MW898183 Pakistan: Gujar Khan: Susral 33.15186109 73.24997274 This study
Minervarya pierrei 16S WLM:MP48174 MW898184 Pakistan: Gujar Khan: Morha Phool 33.16852748 73.08461077 This study
Minervarya pierrei 16S WLM:MP48172 MW898185 Pakistan: Islamabad: Korang river 33.719977 73.147451 This study
Minervarya pierrei 16S WLM:MP48175 MW898186 Pakistan: Islamabad: Korang river 33.719977 73.147451 This study
Minervarya pierrei 16S WLM:MP236167 MW898187 Pakistan: Rawalpindi: Kalyal Sharef 33.53288389 73.05085836 This study
Minervarya syhadrensis 16S IN021 AY882953 India: Kolkata: West Bengal 22.630128 88.418941 Tandon et al. (2005). Unpublished.
Minervarya syhadrensis 16S IN016 AY882948 India: Kolkata: West Bengal 22.573076 88.442974 Tandon et al. (2005). Unpublished.
Hoplobatrachus rugulose 16S Chin‐Chacho‐3663‐16S AB636617 Thailand: Chachoengsao 13.696414 101.64166 Alam et al. (2012)
Hoplobatrachus rugulose 16S Chin‐Chacho‐3911‐16S AB636615 Thailand: Chachoengsao 13.746443 101.54347 Alam et al. (2012)
Hoplobatrachus tigerinus 16S 31 AB167944 India: Mangalore, Padil 12.872854 74.888555 Kurabayashi et al. (2005)
Hoplobatrachus tigerinus 16S 30 AB167943 India: Mangalore, Padil 12.869214 74.882375 Kurabayashi et al. (2005)
Hoplobatrachus tigerinus 16S Htig‐In AB530600 India: Padil 12.867122 74.882085 Hasan et al. (2014)
Hoplobatrachus tigerinus 16S RGCB 5794 KU179090 India: Kerala 9.797816 76.895336 Anoop and George (2016). Unpublished
Hoplobatrachus tigerinus 16S RGCB 5060 KU179088 India: Kerala 9.803303 76.912811 Anoop and George (2016). Unpublished
Hoplobatrachus tigerinus 16S RGCB 5731 KU179089 India: Kerala 9.797383 76.915643 Anoop and George (2016). Unpublished
Hoplobatrachus tigerinus 16S tig‐baji‐A AB290412 India: Bajipe 12.962778 74.890833 Alam et al. (2008)
Hoplobatrachus tigerinus 16S tig‐padi‐A AB272594 India: Padil 12.869167 74.8825 Alam et al. (2008)
Hoplobatrachus tigerinus 16S WLM:HT46162 MW898188 Pakistan: Islamabad: Naval anchorage 33.568652 73.183754 This study
Hoplobatrachus tigerinus 16S WLM:HT236161 MW898189 Pakistan: Kallar Syedan: Bhyakrial 33.4835282 73.35569476 This study
Hoplobatrachus tigerinus 16S WLM:HT48177 MW898190 Pakistan: Rawalpindi: Adiala Road 33.482533 73.005784 This study
Hoplobatrachus tigerinus 16S IABHU<JPN>:4001 AB671183 Bangladesh: Mymensingh 24.745336 90.404392 Hasan et al. (2012)
Hoplobatrachus tigerinus 16S Tig‐Control‐3920‐16S AB636619 Bangladesh: Mymensingh, BAU Campus 24.724225 90.428289 Alam et al. (2012)
Hoplobatrachus tigerinus 16S Htig‐Bd1 AB530500 Bangladesh: Mymensingh, BAU Campus 24.45 90.24 Hasan et al. (2012)
Hoplobatrachus tigerinus 16S IABHU<JPN>:4000 AB671182 Bangladesh: Mymensingh 24.745024 90.404563 Hasan et al. (2012)
Hoplobatrachus tigerinus 16S tig‐jaga‐B AB272590 Bangladesh: Jagannathganj 24.75 89.816667 Alam et al. (2008)
Hoplobatrachus tigerinus 16S tig‐sylh‐A AB272588 Bangladesh: Sylhet 24.92 92 Alam et al. (2008)
Hoplobatrachus tigerinus 16S tig‐BAUC‐B AB272584 Bangladesh: Mymensingh, BAU Campus 24.747222 90.406667 Alam et al. (2008)
Hoplobatrachus tigerinus 16S tig‐BAUC‐A AB272583 Bangladesh: Mymensingh, BAU Campus 24.738321 90.401817 Alam et al. (2008)
Euphlyctis aloysii 16S BNHS5995 KU870382 India: Karnataka 13.3728 74.8016 Priti et al. (2016)
Euphlyctis hexadactylus 16S hex‐mudi‐A AB272608 India: Mudigere, Karnataka 12.87 74.92 Alam et al. (2008)
Euphlyctis hexadactylus 16S hex‐adya‐B AB272607 India: Adyar, Karnataka 13.134444 75.641111 Alam et al. (2008)
Euphlyctis karaavali 16S BNHS5986 KU870373 India: Uttara Kannada, Karnataka 14.5512 74.3378 Priti et al. (2016)
Euphlyctis ehrenbergi 16S MNHN 2000.649 AY014367 Yemen Kosuch et al. (2001)
Euphlyctis mudigere 16S Emud‐In AB530599 India: Mudigere 13.142503 75.646705 Hasan et al. (2014)
Euphlyctis cyanophlyctis 16S RGCB 79 KU179080 India: Kerala 10.046289 77.003533 Anoop and George (2016). Unpublished
Euphlyctis cyanophlyctis 16S EU523739 India: Kerala 10.026056 77.07216 Liya et al. (2008). Unpublished
Euphlyctis cyanophlyctis 16S RGCB 1018 KU179079 India: Nagapattinam, Tamil Nadu 10.780117 79.83786 Anoop and George (2016). Unpublished
Euphlyctis mudigere 16S AF249053 India: Mudigere 12.904912 74.85309 Bossuyt and Milinkovitch (2000)
Euphlyctis cyanophlyctis 16S MNHN 2000.650 AY014366 India: Cochin Kosuch et al. (2001)
Euphlyctis cyanophlyctis 16S cya‐padi‐B AB272604 India: Padil 12.869167 74.8825 Alam et al. (2008)
Euphlyctis cyanophlyctis 16S 030523–03 AB167938 India: Western Ghats, Madikeri 12.427069 75.731093 Kurabayashi et al. (2005)
Euphlyctis cyanophlyctis 16S AB488901 India: Mangalore 12.904912 74.85309 Kotaki et al. (2010)
Euphlyctis cyanophlyctis 16S Ecya‐In AB530596 India: Madikeri 12.429919 75.73281 Hasan et al. (2014)
Euphlyctis kalasgramensis 16S ZMUVAS5 MK920114 Pakistan: Pattoki, Kasur 31.044 73.87492 Ali et al. (2020)
Euphlyctis kalasgramensis 16S ZMUVAS1 MK881165 Pakistan: Pattoki, Kasur 31.044 73.8749 Ali et al. (2020)
Euphlyctis kalasgramensis 16S cya‐assa‐A AB290420 India: Assam 26.165556 92.841389 Alam et al. (2008)
Euphlyctis kalasgramensis 16S cya‐BAUC‐A AB272601 Bangladesh: Mymensingh, BAU Campus 24.747222 90.406667 Alam et al. (2008)
Euphlyctis kalasgramensis 16S Ecya‐Bd3 AB530496 Bangladesh: Cox's Bazar, Laboni point 21.41 91.98 Hasan et al. (2012)
Euphlyctis kalasgramensis 16S Ecya‐Bd4 AB530497 Bangladesh: Cox's Bazar, Laboni point 21.41 91.98 Hasan et al. (2012)
Euphlyctis kalasgramensis 16S Ecya‐Bd2 AB530495 Bangladesh: Mymensingh, Char Nilokhia 21.45 90.24 Hasan et al. (2012)
Euphlyctis kalasgramensis 16S ESP 02 MK635488 Bangladesh: Kalashram 22.760392 90.319291 Jahan et al. (2019). Unpublished
Euphlyctis kalasgramensis 16S HJZG‐03 MG010388 Bangladesh: Barisal 22.696171 90.355864 Jahan et al. (2019). Unpublished
Euphlyctis kalasgramensis 16S MZH‐3381 KP091868 Bangladesh: Kalashram 22.760392 90.317961 Howlader et al. (2015b)
Euphlyctis kalasgramensis 16S PUCZM/IX/SL64 MH087080 India: Mizoram 23.759 92.799 Lalronunga et al. (2019) Unpublished
Euphlyctis kalasgramensis 16S PUCZM/IX/SL613 MH087081 India: Mizoram 23.712 92.662 Lalronunga et al. (2019) Unpublished
Euphlyctis kalasgramensis 16S PUCZM/IX/SL62 MH087078 India: Mizoram 23.759 92.799 Lalronunga et al. (2019) Unpublished
Euphlyctis kalasgramensis 16S PUCZM/IX/SL63 MH087079 India: Mizoram 23.759 92.799 Lalronunga et al. (2019) Unpublished
Euphlyctis kalasgramensis 16S MZH‐3383 KP091856 Bangladesh: Barisal 22.694206 90.351395 Howlader et al. (2015b)
Euphlyctis cyanophlyctis 16S F1 KF992815 Iran: Tiran 32.701346 51.153867 Khajeh et al. (2014)
Euphlyctis cyanophlyctis 16S A1 KF992800 Iran: Apatan 27.350647 62.098627 Khajeh et al. (2014)
Euphlyctis kalasgramensis 16S WLM:EK303173 MW898195 Pakistan: Taxila: Village Khurram 33.7345002 72.86511099 This study
Euphlyctis kalasgramensis 16S WLM:EK48179 MW898196 Pakistan: Islamabad: Shahdara 33.78513863 73.17800038 This study
Euphlyctis kalasgramensis 16S WLM:EK48178 MW898197 Pakistan: Islamabad: Shahdara 33.78513863 73.17800038 This study
Euphlyctis kalasgramensis 16S WLM:EK481710 MW898198 Pakistan: Islamabad: Shahdara 33.78513863 73.17800038 This study
Euphlyctis kalasgramensis 16S WLM:EK236162 MW898199 Pakistan: Gujar Khan: Doltana 33.19633336 73.26858302 This study
Euphlyctis kalasgramensis 16S WLM:EK10917 MW898200 Pakistan: Murree: Manga 33.798224 73.294917 This study
Euphlyctis kalasgramensis 16S WLM:EK26516t6 MW898201 Pakistan: Islamabad: Talhar 33.770179 73.049072 This study
Euphlyctis kalasgramensis 16S WLM:EK265168 MW898202 Pakistan: Islamabad: Talhar 33.770179 73.049072 This study
Euphlyctis kalasgramensis 16S WLM:EK2010175 MW898203 Pakistan: Kahuta: Panjpeer 33.65313917 73.5337495 This study
Euphlyctis kalasgramensis 16S WLM:EK2010173 MW898204 Pakistan: Kahuta: Panjpeer 33.65313917 73.5337495 This study
Euphlyctis kalasgramensis 16S WLM:EK2010174 MW898205 Pakistan: Kahuta: Panjpeer 33.65313917 73.5337495 This study
Euphlyctis kalasgramensis 16S WLM:EK2010176 MW898206 Pakistan: Kahuta: Panjpeer 33.645182 73.460291 This study
Euphlyctis kalasgramensis 16S WLM:EK2010172 MW898207 Pakistan: Kahuta: Panjpeer 33.645182 73.460292 This study
Euphlyctis kalasgramensis 16S WLM:EK46161 MW898208 Pakistan: Kotli Sattian: Near Kahuta Checkpost 33.75554159 73.44597954 This study
Euphlyctis kalasgramensis 16S WLM:EK461612 MW898209 Pakistan: Rawalpindi: Soan river 33.436292 72.99796 This study
Euphlyctis kalasgramensis 16S WLM:EK252173 MW898210 Pakistan: Islamabad: Bani Gala 33.711083 73.161416 This study
Euphlyctis kalasgramensis 16S WLM:EK252172 MW898211 Pakistan: Islamabad: Bani Gala 33.711083 73.161416 This study
Euphlyctis kalasgramensis 16S WLM:EK305161 MW898212 Pakistan: Rawalpindi: Choanthra 33.352238 72.775779 This study
Euphlyctis kalasgramensis 16S WLM:EK31317t MW898213 Pakistan: Rawalpindi: Udhual 33.312832 72.912557 This study

APPENDIX 2.

Primers used in the present study for PCR amplification

Gene Primer Sequence 5′‐3′ bp Reference
16S

16SAR

16SBR

5′‐CGCCTGTTTAYCAAAAACAT‐3′

5′‐CCGGTYTGAACTCAGATCAYGT‐3′

550 Palumbi (1996)
16S

16SC

16SD

5′‐GTRGGCCTAAAAGCAGCCAC‐3′

5′‐CTCCGGTCTGAACTCAGATCACGTAG‐3′

950 Cannatella et al. (1998)

APPENDIX 3.

Bayesian inference analysis based on the 16S rRNA, of genus Duttaphrynus, Family Bufonidae. Posterior probability values are indicated near each node. Sequences generated in the present study are given in red.

APPENDIX 3.

APPENDIX 4.

Bayesian inference analysis based on the 16S rRNA, of genus Microhyla, Family Microhylidae. Posterior probability values are indicated near each node. Sequences generated in the present study are given in red.

APPENDIX 4.

APPENDIX 5.

Bayesian inference analysis based on the 16S rRNA, of genus Nanorana and Allopaa. Posterior probability values are indicated near each node. Sequences generated in the present study are given in red.

APPENDIX 5.

APPENDIX 6.

Bayesian inference analysis based on the 16S rRNA, of genus Nanorana. Posterior probability values are indicated near each node. Sequences generated in the present study are given in red.

APPENDIX 6.

APPENDIX 7.

Bayesian inference analysis based on the 16S rRNA, of genus Sphaerotheca, Fejervarya, and Minervarya. Posterior probability values are indicated near each node. Sequences generated in the present study are given in red.

APPENDIX 7.

APPENDIX 8.

Bayesian inference analysis based on the 16S rRNA, of genus Hoplobatrachus and Euphlyctis. Posterior probability values are indicated near each node. Sequences generated in the present study are given in red.

APPENDIX 8.

Akram, A. , Rais, M. , Lopez, K. , Tarvin, R. D. , Saeed, M. , Bolnick, D. I. , & Cannatella, D. C. (2021). An insight into molecular taxonomy of bufonids, microhylids, and dicroglossid frogs: First genetic records from Pakistan. Ecology and Evolution, 11, 14175–14216. 10.1002/ece3.8134

DATA AVAILABILITY STATEMENT

The sequence data generated in this study are readily available on GenBank with accession numbers MW885769 to MW885776, MW886319 to MW886322, and MW898152 to MW898213.

REFERENCES

  1. Ahmed, W. , Rais, M. , Saeed, M. , Akram, A. , Khan, I. A. , & Gill, S. (2020). Site occupancy of two endemic stream frogs in different forest types in Pakistan. Herpetological Conservation and Biology, 15(3), 506–511. [Google Scholar]
  2. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. 10.1109/TAC.1974.1100705 [DOI] [Google Scholar]
  3. Akram, A. , Rais, M. , Asadi, M. A. , Jilani, M. J. , Balouch, S. , Anwar, M. , & Saleem, A. (2015). Do habitat variables correlate anuran abundance in arid terrain of Rawalpindi‐Islamabad Areas, Pakistan? Journal of King Saud University – Science, 27, 278–283. 10.1016/j.jksus.2015.02.001 [DOI] [Google Scholar]
  4. Alam, M. S. , Igawa, T. , Khan, M. M. , Islam, M. M. , Kuramoto, M. , Matsui, M. , Kurabayashi, A. , & Sumida, M. (2008). Genetic divergence and evolutionary relationships in six species of genera Hoplobatrachus and Euphlyctis (Amphibia: Anura) from Bangladesh and other Asian countries revealed by mitochondrial gene sequences. Molecular Phylogenetics and Evolution, 48(2), 515–527. 10.1016/j.ympev.2008.04.020 [DOI] [PubMed] [Google Scholar]
  5. Alam, M. S. , Islam, M. M. , Khan, M. R. , Hasan, M. , Wanichanon, R. , & Sumida, M. (2012). Postmating isolation in six species of three genera (Hoplobatrachus, Euphlyctis and Fejervarya) from family Dicroglossidae (anura), with special reference to spontaneous production of allotriploids. Zoological Science, 29(11), 743–752. 10.2108/zsj.29.743 [DOI] [PubMed] [Google Scholar]
  6. Ali, W. , Javid, A. , Hussain, A. , Hafeez‐ur‐Rehman, M. , Chabber, A. L. , & Hemmatzadeh, F. (2020). First record of Euphlyctis kalasgramensis (Anura: Dicroglossidae) from Punjab, Pakistan. Mitochondrial DNA Part B Resources, 5(2), 1227–1231. 10.1080/23802359.2020.1731337 [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Baig, K. J. (2002). Rediscovery of Murree Hill Frog, Paa vicina after 130 years from Ayubia National Park. Proceedings of Pakistan Academy of Sciences, 39(2), 261–262. [Google Scholar]
  8. Bossuyt, F. , & Milinkovitch, M. C. (2000). Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6585–6590. 10.1073/pnas.97.12.6585 [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Boulenger, G. A. (1882). Catalogue of the Batrachia Salientia s. Ecaudata in the collection of the British Museum (2nd ed.). Taylor and Francis. [Google Scholar]
  10. Boulenger, G. A. (1890). Reptilia and Batrachia (vol. 2). Taylor & Francis. [Google Scholar]
  11. Cannatella, D. C. , Hillis, D. M. , Chippindale, P. T. , Weigt, L. , Rand, A. S. , & Ryan, M. J. (1998). Phylogeny of frogs of the Physalaemus Pustulosus species group, with an examination of data incongruence. Systematic Biology, 47, 311–335. 10.1080/106351598260932 [DOI] [PubMed] [Google Scholar]
  12. Chandramouli, S. R. , Vasudevan, K. , Harikrishnan, S. , Dutta, S. K. , Janani, S. J. , Sharma, R. , Indraneil, D. , & Aggarwal, R. (2016). A new genus and species of arboreal toad with phytotelmonous larvae, from the Andaman Islands, India (Lissamphibia, Anura, Bufonidae). ZooKeys, 555, 57–90. 10.3897/zookeys.555.6522 [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chaudhry, Q. Z. , & Rasul, G. (2004). Agro‐climatic classification of Pakistan. Science Vision, 9, 59–66. [Google Scholar]
  14. Che, J. , Hu, J. S. , Zhou, W. W. , Murphy, R. W. , Papenfuss, T. J. , Chen, M. Y. , Rao, D. Q. , Li, P. P. , & Zhang, Y. P. (2009). Phylogeny of the Asian spiny frog tribe Paini (Family Dicroglossidae) sensu Dubois. Molecular Phylogenetics and Evolution, 50(1), 59–73. 10.1016/j.ympev.2008.10.007 [DOI] [PubMed] [Google Scholar]
  15. Chen, Z. , Zhai, X. , Zhang, J. , & Chen, X. (2015). The complete mitochondrial genome of Feirana taihangnica (Anura: Dicroglossidae). Mitochondrial DNA, 26(3), 485–486. [DOI] [PubMed] [Google Scholar]
  16. Dinesh, K. P. , Radhakrishnan, C. , Gururaja, K. V. , & Bhatta, G. K. (2009). An annotated checklist of amphibian of India with some insights into the patterns of species discoveries, distribution and endemism. Records of the Zoological Survey of India, 302, 1–153. [Google Scholar]
  17. Dinesh, K. P. , Vijayakumar, S. P. , Channakeshavamurthy, B. H. , Torsekar, V. R. , Kulkarni, N. U. , & Shanker, K. (2015). Systematic status of Fejervarya (Amphibia, Anura, Dicroglossidae) from South and SE Asia with the description of a new species from the Western Ghats of Peninsular India. Zootaxa, 3999, 79–94. 10.11646/zootaxa.3999.1.5 [DOI] [PubMed] [Google Scholar]
  18. Dubois, A. (1976). Let Grenoulles du sous‐genre Paa du Nepal (familie Ranidae, genre Rana). Cahiers Népalais – Documents, 6, i–vi+1‐275. [Google Scholar]
  19. Dubois, A. (1983). Note préliminaire sur le groupe de Rana (Tomopterna) breviceps Schneider, 1799 (Amphibians, Anoures), avec diagnose d’une sous‐expèce nouvelle de Ceylan. Alytes, 2, 163–170. [Google Scholar]
  20. Dubois, A. , & Khan, M. S. (1979). A new species of frog (genus Rana, subgenus Paa) from northern Pakistan (Amphibia, Anura). Journal of Herpetology, 13(4), 403–410. 10.2307/1563474 [DOI] [Google Scholar]
  21. Dubois, A. , & Ohler, A. (1999). Asian and Oriental toads of the Bufo melanostictus, Bufo scaber and Bufo stejnegeri groups (Amphibia, Anura): A list of available and valid names and redescription of some name‐bearing types. Journal of South Asian Natural History, 4, 133–180. [Google Scholar]
  22. Dubois, A. , Ohler, A. , & Biju, S. D. (2001). A new genus and species of Ranidae (Amphibia, Anura) from south‐western India. Alytes, 19, 53–79. [Google Scholar]
  23. Dutta, S. K. (1986). Comments on the species status and distribution of Tomopterna dobsonii Boulenger (Anura: Ranidae) in India. Records of the Zoological Survey of India, 83, 123–127. [Google Scholar]
  24. Dutta, S. , Kumar, S. T. , Manamendra‐Arachchi, K. , Khan, M. S. , & Roy, D. (2008). Microhyla ornata. The IUCN Red List of Threatened Species 2008: e.T57886A11686884. 10.2305/IUCN.UK.2008.RLTS.T57886A11686884.en [DOI] [Google Scholar]
  25. Ficetola, G. F. , Crottini, A. , Casiraghi, M. , & Padoa‐Schioppa, E. (2010). New data on amphibians and reptiles of the Northern Areas of Pakistan: Distribution, genetic variability and conservation issues. North‐Western Journal of Zoology, 6(1), 1–12. [Google Scholar]
  26. Frost, D. R. (2019). Amphibian species of the world: An online reference. Version 6.0. Electronic Database. American Museum of Natural History. http://research.amnh.org/herpetology/amphibia/index.html [Google Scholar]
  27. Frost, D. R. , Grant, T. , Faivovich, J. , Bain, R. H. , Haas, A. , Haddad, C. F. B. , De Sá, R. O. , Channing, A. , Wilkinson, M. , Donnellan, S. C. , Raxworthy, C. J. , Campbell, J. A. , Blotto, B. L. , Moler, P. , Drewes, R. C. , Nussbaum, R. A. , Lynch, J. D. , Green, D. M. , & Wheeler, W. C. (2006). The Amphibian tree of life. Bulletin of American Museum of Natural History, 297, 1–291. 10.1206/0003-0090(2006)297#;0001:tatol#;2.0.co;2 [DOI] [Google Scholar]
  28. Garg, S. , & Biju, S. D. (2017). Description of four new species of Burrowing Frogs in the Fejervarya rufescens complex (Dicroglossidae) with notes on morphological affinities of Fejervarya species in the Western Ghats. Zootaxa, 4277(4), 451–490. 10.11646/zootaxa.4277.4.1 [DOI] [PubMed] [Google Scholar]
  29. Garg, S. , Das, A. , Kamei, R. G. , & Biju, S. D. (2018). Delineating Microhyla ornata (Anura, Microhylidae): Mitochondrial DNA barcodes resolve century‐old taxonomic misidentification. Mitochondrial DNA Part B Resources, 3, 856–861. 10.1080/23802359.2018.1501286 [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Garg, S. , Suyesh, R. , Das, A. , Jiang, J. , Wijayathilaka, N. , Amarasinghe, A. A. T. , Alhadi, F. , Vineeth, K. K. , Aravind, N. A. , Senevirathne, G. , Meegaskumbura, M. , & Biju, S. D. (2019). Systematic revision of Microhyla (Microhylidae) frogs of South Asia: A molecular, morphological, and acoustic assessment. Vertebrate Zoology, 69, 1–71. 10.26049/VZ69-1-2019-01 [DOI] [Google Scholar]
  31. Gorin, V. A. , Solovyeva, E. N. , Hasan, M. , Okamiya, H. , Karunarathna, D. M. S. S. , Pawangkhanant, P. , de Silva, A. , Juthong, W. , Milto, K. D. , Nguyen, L. T. , Suwannapoom, C. , Haas, A. , Bickford, D. P. , Das, I. , & Poyarkov, N. A. (2020). A little frog leaps a long way: Compounded colonizations of the Indian Subcontinent discovered in the tiny Oriental frog genus Microhyla (Amphibia: Microhylidae). PeerJ, 8, e9411. 10.7717/peerj.9411 [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Goutte, S. , Dubois, A. , Howard, S. D. , Marquez, R. , Rowley, J. J. , Dehling, J. M. , & Legendre, F. (2016). Environmental constraints and call evolution in torrent‐dwelling frogs. Evolution, 70(4), 811–826. [DOI] [PubMed] [Google Scholar]
  33. Grosjean, S. , Ohler, A. , Chuaynkern, Y. , Cruaud, C. , & Hassanin, A. (2015). Improving biodiversity assessment of anuran amphibians using DNA barcoding of tadpoles. Case studies from Southeast Asia. Comptes Rendus Biologies, 338(5), 351–361. [DOI] [PubMed] [Google Scholar]
  34. Hasan, M. , Islam, M. M. , Khan, M. M. R. , Alam, M. S. , Kurabayashi, A. , Igawa, T. , Kuramoto, M. , & Sumida, M. (2012). Cryptic anuran biodiversity in Bangladesh revealed by mitochondrial 16S rRNA gene sequences. Zoological Science, 29, 162–172. [DOI] [PubMed] [Google Scholar]
  35. Hasan, M. , Islam, M. M. , Khan, M. M. R. , Igawa, T. , Alam, M. S. , Djong, H. T. , Kurniawan, N. , Joshy, H. , Sen, Y. H. , Belabut, D. M. , Kurabayashi, A. , Kuramoto, M. , & Sumida, M. (2014). Genetic divergences of South and Southeast Asian frogs: A case study of several taxa based on 16S ribosomal RNA gene data with notes on the generic name Fejervarya . Turkish Journal of Zoology, 38, 389–411. 10.3906/zoo-1308-36 [DOI] [Google Scholar]
  36. Hasan, M. , Kuramoto, M. , Islam, M. M. , Alam, M. S. , Khan, M. M. R. , & Sumida, M. (2012). A new species of genus Hoplobatrachus (Anura, Dicroglossidae) from the coastal belt of Bangladesh. Zootaxa, 3312(1), 45–58. [Google Scholar]
  37. Hasan, M. , Razzaque, M. A. , Sarker, A. K. , Kuramoto, M. , & Sumida, M. (2015). Genetic variation, advertisement call, and morphometry of Microhyla nilphamariensis from Bangladesh. Philippine Journal of Systematic Biology, 9, 63–80. [Google Scholar]
  38. Hoang, D. T. , Chernomor, O. , Von Haeseler, A. , Minh, B. Q. , & Vinh, L. S. (2018). UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35, 518–522. 10.1093/molbev/msx281 [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Hofmann, S. , Baniya, C. B. , Litvinchuk, S. N. , Miehe, G. , Li, J. T. , & Schmidt, J. (2019). Phylogeny of spiny frogs Nanorana (Anura: Dicroglossidae) supports a Tibetan origin of a Himalayan species group. Ecology and Evolution, 9, 14498–14511. 10.1002/ece3.5909 [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Hofmann, S. , Masroor, R. , & Jablonski, D. (2021). Morphological and molecular data on tadpoles of the westernmost Himalayan spiny frog Allopaa hazarensis (Dubois & Khan, 1979). ZooKeys, 1049, 67. 10.3897/zookeys.1049.66645 [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Howlader, M. S. A. (2011). Cricket frog (Amphibia. Anura. Dicroglossidae): Two regions of Asia are corresponding two groups. Bonnoprani: Bangladesh. Wildlife Bulletin, 5, 1–7. [Google Scholar]
  42. Howlader, M. S. A. , Nair, A. , Gopalan, S. V. , & Merilä, J. (2015a). A new species of Microhyla (Anura: Microhylidae) from Nilphamari, Bangladesh. PLoS One, 10(3), e0119825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Howlader, M. S. A. , Nair, A. , Gopalan, S. V. , & Merilä, J. (2015b). A new species of Euphlyctis (Anura: Dicroglossidae) from Barisal, Bangladesh. PLoS One, 10, 1–13. 10.1371/journal.pone.0116666 [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Howlader, M. S. A. , Nair, A. , & Merilä, J. (2016). A new species of frog (Anura: Dicroglossidae) discovered from the mega city of Dhaka. PLoS One, 11(3), e0149597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Hussain, S. , Bukhari, S. M. , Javid, A. , Hussain, A. , Rashid, M. , & Ali, W. (2020). Molecular identification of genus Duttaphrynus from Punjab, Pakistan. Mitochondrial DNA Part B, 5(3), 3236–3238. 10.1080/23802359.2020.1810143 [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Jablonski, D. , Khan, M. A. , & Masroor, R. (2020). The genus Microhyla (Anura: Microhylidae) in Pakistan: Species status and origins. Zootaxa, 4845(2), 293–296. 10.11646/zootaxa.4845.2.11 [DOI] [PubMed] [Google Scholar]
  47. Jablonski, D. , Masroor, R. , & Hofmann, S. (2021). Revisited Molecular Phylogeny of the Genus Sphaerotheca (Anura: Dicroglossidae): The Biogeographic Status of Northernmost Populations and Further Taxonomic Changes. Diversity, 13(5), 216. 10.3390/d13050216 [DOI] [Google Scholar]
  48. Jeong, T. J. , Jun, J. , Han, S. , Kim, H. T. , Oh, K. , & Kwak, M. (2013). DNA barcode reference data for the Korean herpetofauna and their applications. Molecular Ecology Resources, 13(6), 1019–1032. 10.1111/1755-0998.12055 [DOI] [PubMed] [Google Scholar]
  49. Joshy, S. H. , Alam, M. S. , Kurabayashi, A. , Sumida, M. , & Kuramoto, M. (2009). Two new species of the genus Euphlyctis (Anura, Ranidae) from southwestern India, revealed by molecular and morphological comparisons. Alytes, 26, 97–116. [Google Scholar]
  50. Kalyaanamoorthy, S. , Minh, B. Q. , Wong, T. K. F. , Von Haeseler, A. , & Jermiin, J. S. (2017). ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nature Methods, 14, 587–589. 10.1038/nmeth.4285 [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Katoh, K. , Rozewicki, J. , & Yamada, K. D. (2019). MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20(4), 1160–1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Katoh, K. , & Standley, D. (2013). MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. 10.1093/molbev/mst010 [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Kearse, M. , Moir, R. , Wilson, A. , Stones‐Havas, S. , Cheung, M. , Sturrock, S. , … Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647–1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Khajeh, A. , Mohammadi, Z. , Ghorbani, F. , Meshkani, J. , Pouyani, E. R. , & Torkamanzehi, A. (2014). New insights into the taxonomy of the skittering frog Euphlyctis cyanophlyctis complex (Schneider, 1799) (Amphibia: Dicroglossidae) based on mitochondrial 16S rRNA gene sequences in southern Asia. Acta Herpetologica, 9, 159–166. 10.13128/Acta_Herpetol-14013 [DOI] [Google Scholar]
  55. Khan, M. S. (1976). An annotated checklist and key to the amphibians of Pakistan. Biologia (Lahore), 22(2), 201–210. [Google Scholar]
  56. Khan, M. S. (2001). Notes on cranial‐ridged toads of Pakistan and description of a new subspecies (Amphibia: Bufonidae). Pakistan Journal of Zoology, 33(4), 293–298. [Google Scholar]
  57. Khan, M. S. (2006). A checklist and key to the Amphibia of Pakistan. Krieger Publishing Company. [Google Scholar]
  58. Khatiwada, J. R. , Shu, G. C. , Wang, S. H. , Thapa, A. , Wang, B. , & Jiang, J. (2017). A new species of the genus Microhyla (Anura: Microhylidae) from Eastern Nepal. Zootaxa, 4254(2), 221–239. 10.11646/zootaxa.4254.2.4 [DOI] [PubMed] [Google Scholar]
  59. Khatiwada, J. R. , Wang, B. , Zhao, T. , Xie, F. , & Jiang, J. (2021). An integrative taxonomy of amphibians of Nepal: An updated status and distribution. Asian Herpetological Research, 12(1), 1–35. 10.16373/j.cnki.ahr.200050 [DOI] [Google Scholar]
  60. Köhler, G. , Mogk, L. , Pa, K. , Khaing, P. , & Than, N. L. (2019). The genera Fejervarya and Minervarya in Myanmar: Description of a new species, new country records, and taxonomic notes (Amphibia, Anura, Dicroglossidae). Vertebrate Zoology, 69, 183–226. 10.26049/VZ69-2-2019-05 [DOI] [Google Scholar]
  61. Kosuch, J. , Vences, M. , Dubois, A. , Ohler, A. , & Böhme, W. (2001). Out of Asia: Mitochondrial DNA evidence for an Oriental origin of tiger frogs, genus Hoplobatrachus . Molecular Phylogenetics and Evolution, 21(3), 398–407. 10.1006/mpev.2001.1034 [DOI] [PubMed] [Google Scholar]
  62. Kotaki, M. , Kurabayashi, A. , Matsui, M. , Khonsue, W. , Djong, T. H. , Tandon, M. , & Sumida, M. (2008). Genetic divergences and phylogenetic relationships among the Fejervarya limnocharis complex in Thailand and neighboring countries revealed by mitochondrial and nuclear genes. Zoological Science, 25, 381–390. 10.2108/zsj.25.381 [DOI] [PubMed] [Google Scholar]
  63. Kotaki, M. , Kurabayashi, A. , Matsui, M. , Kuramoto, M. , Djong, T. H. , & Sumida, M. (2010). Molecular phylogeny of the diversified frogs of genus Fejervarya (Anura: Dicroglossidae). Zoological Science, 27(5), 386–395. 10.2108/zsj.27.386 [DOI] [PubMed] [Google Scholar]
  64. Kumar, S. , Stecher, G. , & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Kurabayashi, A. , Kuramoto, M. , Joshy, H. , & Sumida, M. (2005). Molecular phylogeny of the ranid frogs from Southwest India based on the mitochondrial ribosomal RNA gene sequences. Zoological Science, 22(5), 525–534. 10.2108/zsj.22.525 [DOI] [PubMed] [Google Scholar]
  66. Kuramoto, M. , Joshy, S. H. , Kurabayashi, A. , & Sumida, M. (2007). The genus Fejervarya (Anura: Ranidae) in Central Western Ghats, India, with descriptions of four new cryptic species. Current Herpetology, 26, 81–105. 10.3105/1881-1019(2007)26#;81:TGFARI#;2.0.CO;2 [DOI] [Google Scholar]
  67. Kurniawan, N. , Djong, T. H. , Maideliza, T. , Hamidy, A. , Hasan, M. , Igawa, T. , & Sumida, M. (2014). Genetic divergence and geographic distribution of frogs in Genus Fejervarya from Indonesia inferred from Mitochondrial 16S rRNA Gene analysis. Treubia, 41, 1–16. [Google Scholar]
  68. Li, B. , Wang, J. , Yuan, S. , Liu, N. , Rao, D. , Liang, H. , & Wang, X. (2012). Study on the phylogeny of Kaloula (Microhylidae, Amphibia) based on the mitochondrial gene. Xibu Linye Kexue, 41(2), 51–55. [Google Scholar]
  69. Litvinchuk, S. N. , Borkin, L. J. , Mazepa, G. , Skorinov, D. V , Melnikov, D. A. , & Rosanov, J. M. (2017). Distribution of amphibians in the Western Himalaya (India). In: Russian Himalayan Research: Past, Present, Future. (188–194). St. Petersburg: Evropeisky Dom. [Google Scholar]
  70. Liu, W. , Lathrop, A. , Fu, J. , Yang, D. , & Murphy, R. W. (2000). Phylogeny of east Asian bufonids inferred from mitochondrial DNA sequences (Anura: Amphibia). Molecular Phylogenetics and Evolution, 14(3), 423–435. 10.1006/mpev.1999.0716 [DOI] [PubMed] [Google Scholar]
  71. Masroor, R. (2011). An annotated checklist of amphibians and reptiles of Margalla hills National Park, Pakistan. Pakistan Journal of Zoology, 43(6), 1041–1048. [Google Scholar]
  72. Mathew, R. , & Sen, N. (2010). Pictorial guide to amphibians of North East India. Zoological Survey of India. [Google Scholar]
  73. Matsui, M. (2011). Taxonomic revision of one of the Old World’s smallest frogs, with description of a new Bornean Microhyla (Amphibia, Microhylidae). Zootaxa, 2814, 33. 10.11646/zootaxa.2814.1.3 [DOI] [Google Scholar]
  74. Matsui, M. , Hamidy, A. , Belabut, D. M. , Ahmad, N. , Panha, S. , Sudin, A. , Khonsue, W. , Oh, H. S. , Yong, H. S. , Jiang, J. P. , & Nishikawa, K. (2011). Systematic relationships of Oriental tiny frogs of the family Microhylidae (Amphibia, Anura) as revealed by mtDNA genealogy. Molecular Phylogenetics and Evolution, 61, 167–176. 10.1016/j.ympev.2011.05.015 [DOI] [PubMed] [Google Scholar]
  75. Matsui, M. , Ito, H. , Shimada, T. , Ota, H. , Saidapur, S. K. , Khonsue, W. , Tanaka‐Ueno, T. , & Wu, G. F. (2005). Taxonomic relationships within the Pan‐Oriental Narrow‐mouth Toad Microhyla ornata as revealed by mtDNA analysis (Amphibia, Anura, Microhylidae). Zoological Science, 22, 489–495. 10.2108/zsj.22.489 [DOI] [PubMed] [Google Scholar]
  76. Meegaskumbura, M. , Bossuyt, F. , Pethiyagoda, R. , Manamendra‐Arachchi, K. , Bahir, M. , Milinkovitch, M. C. , & Schneider, C. J. (2002). Sri Lanka: An amphibian hot spot. Science, 298(5592), 379. 10.1126/science.298.5592.379 [DOI] [PubMed] [Google Scholar]
  77. Miller, M. , Pfeiffer, W. T. , & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop. 14 Nov 2010. 10.1109/GCE.2010.5676129 [DOI] [Google Scholar]
  78. Molur, S. (2008). South Asian amphibians: Taxonomy, diversity and conservation status. International Zoo Yearbook, 42(1), 143–157. 10.1111/j.1748-1090.2008.00050.x [DOI] [Google Scholar]
  79. Mulcahy, D. G. , Lee, J. L. , Miller, A. H. , Chand, M. , Thura, M. K. , & Zug, G. R. (2018). Filling the bins of life: Report of an amphibian and reptile survey of the Tanintharyi (Tenasserim) Region of Myanmar, with DNA barcode data. ZooKeys, 757, 85–152. 10.3897/zookeys.757.24453 [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Nguyen, L. T. , Schmidt, H. A. , Von Haeseler, A. , & Minh, B. Q. (2015). IQ‐TREE: A fast and effective stochastic algorithm for estimating maximum‐likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274. 10.1093/molbev/msu300 [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Ohler, A. , Deuti, K. , Grosjean, S. , Paul, S. , Ayyaswamy, A. K. , Ahmed, M. F. , & Dutta, S. K. (2009). Small‐sized dicroglossids from India, with the description of a new species from West Bengal, India. Zootaxa, 2209, 43–56. [Google Scholar]
  82. Ohler, A. , & Dubois, A. (2006). Phylogenetic relationships and generic taxonomy of the tribe Paini (Amphibia, Anura, Ranidae, Dicroglossinae), with diagnoses of two new genera. Zoosystema, 28, 769–784. [Google Scholar]
  83. Padhye, A. , Dahanukar, N. , Sulakhe, S. , Dandekar, N. , Limaye, S. , & Jamdade, K. (2017). Sphaerotheca pashchima, a new species of burrowing frog (Anura: Dicroglossidae) from western India. Journal of Threatened Taxa, 9, 10286–10296. 10.11609/jot.2877.9.6.10286-10296 [DOI] [Google Scholar]
  84. Palumbi, S. R. (1996). Nucleic acids II: The polymerase chain reaction. In Hillis D. M., Moritz C. & Mable B. K. (Eds.), Molecular systematics (2nd ed.). Sinauer Associates. [Google Scholar]
  85. Parker, H. W. (1934). A monograph of the frogs of the family Microhylidae. Trustees of the British Museum. [Google Scholar]
  86. Phuge, S. , Patil, A. B. , Pandit, R. , Kulkarni, N. U. , Chennakeshavamurthy, B. H. , Deepak, P. , & Dinesh, K. P. (2020). Importance of genetic data in resolving cryptic species: A century old problem of understanding the distribution of Minervarya syhadrensis Annandale 1919, (Anura: Dicroglossidae). Zootaxa, 4869(4), 451–492. [DOI] [PubMed] [Google Scholar]
  87. Portik, D. M. , & Papenfuss, T. J. (2015). Historical biogeography resolves the origins of endemic Arabian toad lineages (Anura: Bufonidae): Evidence for ancient vicariance and dispersal events with the Horn of Africa and South Asia. BMC Evolutionary Biology, 15, 1–19. 10.1186/s12862-015-0417-y [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Prasad, V. K. , Dinesh, K. P. , Das, A. , Swamy, P. , Shinde, A. D. , & Vishnu, J. B. (2019). A new species of Sphaerotheca Gunther, 1859 (Amphibia: Anura: Dicroglossidae) from the agro ecosystems of Chota Nagpur Plateau, India. Records of the Zoological Survey of India, 119(3), 197–210. 10.26515/rzsi/v119/i3/2019/132173 [DOI] [Google Scholar]
  89. Pratihar, S. , Howard, O. C. , Sushil, D. , Khan, M. S. , Patra, B. C. , Ukuwela, K. D. B. , Das, A. , Pipeng, L. , Jiang, J. , Lewis, J. P. , Pandey, P. N. , Razzaque, A. , Hassapakis, C. , Deuti, K. , & Das, S. (2014). Diversity and conservation of amphibians in South and Southeast Asia. Sauria (Berlin), 36, 9–59. [Google Scholar]
  90. Priti, H. , Naik, C. R. , Seshadri, K. S. , Singal, R. , Vidisha, M. K. , Ravikanth, G. , & Gururaja, K. V. (2016). A new species of Euphlyctis (Amphibia, Anura, Dicroglossidae) from the west coastal plains of India. Asian Herpetological Research, 7, 229–241. 10.16373/j.cnki.ahr.160020 [DOI] [Google Scholar]
  91. Pyron, R. A. , & Wiens, J. J. (2011). A large‐scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Molecular Phylogenetics and Evolution, 61(2), 543–583. 10.1016/j.ympev.2011.06.012 [DOI] [PubMed] [Google Scholar]
  92. Rais, M. , Abbassi, S. , Batool, T. , Jilani, M. J. , Assadi, M. A. , Mubarak, H. , & Baloch, S. (2014). A note on recapture of Nanorana vicina (Anura: Amphibia) from Murree, Pakistan. Journal of Animal and Plant Sciences, 24, 455–458. [Google Scholar]
  93. Rais, M. , Baloch, S. , Rehman, J. , Anwar, M. , Hussain, I. , & Mahmood, T. (2012). Diversity and conservation of amphibians and reptiles in North Punjab, Pakistan. Herpetological Bulletin, 122, 16–25. [Google Scholar]
  94. Rambaut, A , Suchard, M. A. , Xie, D. , & Drummond, A. J. (2014). Tracer v1.6. https://beast.bio.ed.ac.uk/Tracer
  95. Ronquist, F. , Huelsenbeck, J. , & Teslenko, M. (2011). Draft MrBayes version 3.2 manual: tutorials and model summaries. Distributed with the software from http://brahms.biology.rochester.edu/software.html [Google Scholar]
  96. Sanchez, E. , Biju, S. D. , Islam, M. M. , Hasan, M. , Ohler, A. , Vences, M. , & Kurabayashi, A. (2018). Phylogeny and classification of fejervaryan frogs (Anura : Dicroglossidae). Salamandra, 54, 109–116. [Google Scholar]
  97. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464. [Google Scholar]
  98. Sclater, W. L. (1892). List of the Batrachia in the Indian museum. In Proceedings of the Zoological Society of London (pp. 342–343). London Academic Press. [Google Scholar]
  99. Seshadri, K. S. , Singal, R. , Priti, H. , Ravikanth, G. , Vidisha, M. K. , & Saurabh, S. (2016). Microhyla laterite sp. nov., a new species of Microhyla Tschudi, 1838 (Amphibia : Anura : Microhylidae) from a laterite rock formation in South West India. PLoS One, 11, e0149727. 10.1371/journal.pone.0149727 [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Sheikh, M. I. , & Hafeez, S. M. (2001). Forest and forestry in Pakistan. A‐One Publishers. [Google Scholar]
  101. Stuart, B. L. , Inger, R. F. , & Voris, H. K. (2006). High level of cryptic species diversity revealed by sympatric lineages of Southeast Asian forest frogs. Biology Letters, 2, 470–474. 10.1098/rsbl.2006.0505 [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Sukumaran, J. , & Holder, M. T. (2010). DendroPy: A Python library for phylogenetic computing. Bioinformatics, 26(12), 1569–1571. 10.1093/bioinformatics/btq228 [DOI] [PubMed] [Google Scholar]
  103. Sumida, M. , Kondo, Y. , Kanamori, Y. , & Nishioka, M. (2002). Inter‐ and intraspecific evolutionary relationships of the rice frog Rana limnocharis and the allied species R. cancrivora inferred from crossing experiments and mitochondrial DNA sequences of the 12S and 16S rRNA genes. Molecular Phylogenetics and Evolution, 25(2), 293–305. 10.1016/s1055-7903(02)00243-9 [DOI] [PubMed] [Google Scholar]
  104. Sumida, M. , Ueda, H. , & Nishioka, M. (2003). Reproductive isolating mechanisms and molecular phylogenetic relationships among Palearctic and Oriental brown frogs. Zoological Science, 20(5), 567–580. 10.2108/zsj.20.567 [DOI] [PubMed] [Google Scholar]
  105. Tabassum, F. , Rais, M. , Anwar, M. , Mehmood, T. , Hussain, I. , & Ali, K. S. (2011). Abundance and breeding of the common skittering frog (Euphlyctis cyanophlyctis) and bull frog (Hoplobatrachus tigerinus) at Rawal Lake, Islamabad. Pakistan. Asian Herpetological Research, 2, 245–250. 10.3724/SP.J.1245.2011.00245 [DOI] [Google Scholar]
  106. Van Bocxlaer, I. , Biju, S. , Loader, S. P. , & Bossuyt, F. (2009). Toad radiation reveals into‐India dispersal as a source of endemism in the Western Ghats‐Sri Lanka biodiversity hotspot. BMC Evolutionary Biology, 9, 1–10. 10.1186/1471-2148-9-131 [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Van Bocxlaer, I. , Loader, S. P. , Roelants, K. , Biju, S. D. , Menegon, M. , & Bossuyt, F. (2010). Gradual adaptation toward a range‐expansion phenotype initiated the global radiation of toads. Science, 327, 679–682. 10.1126/science.1181707 [DOI] [PubMed] [Google Scholar]
  108. Van Bocxlaer, I. , Roelants, K. , Biju, S. D. , Nagaraju, J. , & Bossuyt, F. (2006). Late Cretaceous vicariance in Gondwanan amphibians. PLoS One, 1(1), e74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Veith, M. , Kosuch, J. , Ohler, A. , & Dubois, A. (2001). Systematics of Fejervarya limnocharis (Gravenhorst, 1829) (Amphibia, Anura, Ranidae) and related species. 2. Morphological and molecular variation in frogs from the Greater Sunda Islands (Sumatra, Java, Borneo) with the definition of two species. Alytes, 19(1), 5–28. [Google Scholar]
  110. Vineeth, K. K. , Radhakrishna, U. K. , Godwin, R. D. , Anwesha, S. , Patil Rajashekhar, K. , & Aravind, N. A. (2018). A new species of Microhyla Tschudi, 1838 (Anura: Microhylidae) from West Coast of India: An integrative taxonomic approach. Zootaxa, 4420, 151–179. 10.11646/zootaxa.4420.2.1 [DOI] [PubMed] [Google Scholar]
  111. Wijayathilaka, N. , Garg, S. , Senevirathne, G. , Karunarathna, N. , Biju, S. D. , & Meegaskumbura, M. (2016). A new species of Microhyla (Anura: Microhylidae) from Sri Lanka: An integrative taxonomic approach. Zootaxa, 4066, 331–342. 10.11646/zootaxa.4066.3.9 [DOI] [PubMed] [Google Scholar]
  112. Wogan, G. O. U. , Stuart, B. L. , Iskandar, D. T. , & McGuire, J. A. (2016). Deep genetic structure and ecological divergence in a widespread human commensal toad. Biological Letters, 12(1), 20150807. 10.1098/rsbl.2015.0807 [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Yousaf, S. , Mahmood, T. , Rais, M. , & Qureshi, I. Z. (2010). Population variation and food habits of ranid frogs in the rice‐based cropping system in Gujranwala Region, Pakistan. Asian Herpetological Research, 1, 123–130. 10.3724/SP.J.1245.2010.00123 [DOI] [Google Scholar]
  114. Yuan, Z. Y. , Suwannapoom, C. , Yan, F. , Poyarkov, N. A. , Nguyen, S. N. , Chen, H. M. , Chomdej, S. , Murphy, R. W. , & Che, J. (2016). Red River barrier and Pleistocene climatic fluctuations shaped the genetic structure of Microhyla fissipes complex (Anura: Microhylidae) in southern China and Indochina. Current Zoology, 62, 531–543. 10.1093/cz/zo [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Zhang, J. Y. , Zhang, L. P. , Yu, D. N. , Storey, K. B. , & Zheng, R. Q. (2018). Complete mitochondrial genomes of Nanorana taihangnica and N. yunnanensis (Anura: Dicroglossidae) with novel gene arrangements and phylogenetic relationship of Dicroglossidae. BMC Evolutionary Biology, 18(1), 1–13. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Tables S1‐S6

Data Availability Statement

The sequence data generated in this study are readily available on GenBank with accession numbers MW885769 to MW885776, MW886319 to MW886322, and MW898152 to MW898213.


Articles from Ecology and Evolution are provided here courtesy of Wiley

RESOURCES