Skip to main content
American Journal of Public Health logoLink to American Journal of Public Health
. 1987 May;77(5):546–549. doi: 10.2105/ajph.77.5.546

Nicotine yield and measures of cigarette smoke exposure in a large population: are lower-yield cigarettes safer?

D J Maron, S P Fortmann
PMCID: PMC1647026  PMID: 3565645

Abstract

We examined the relationship of machine-estimated nicotine yield by cigarette brand with the level of cigarette consumption and two biochemical measures of smoke exposure (expired-air carbon monoxide and plasma thiocyanate) in a large, population-based sample of smokers (N = 713). The lower the nicotine yield of the cigarette, the greater the number of cigarettes smoked per day. Prior to adjusting for number of cigarettes smoked per day, nicotine yield was not related to the actual measures of smoke exposure. Smokers of ultralow-yield cigarettes had laboratory tests of smoke exposure which were not significantly different from those of smokers of higher-yield brands. Only after adjustment for number of cigarettes smoked per day did nicotine yield become significantly related to expired-air carbon monoxide and to plasma thiocyanate. In multivariate analysis, the number of cigarettes smoked per day accounted for 28 per cent and 22 per cent of the variance in observed expired-air carbon monoxide and plasma thiocyanate levels, respectively, whereas nicotine yield accounted for only 1 per cent and 2 per cent of the variance, respectively. The relative lack of an effect of nicotine yield on the biochemical measure appears to be due to the fact that smokers of lower nicotine brands smoked more cigarettes per day, thereby compensating for reduced delivery of smoke products. Our data do not support the concept that ultralow-yield cigarettes are less hazardous than others. Machine estimates suggesting low nicotine yield underrepresent actual human consumption of harmful cigarette constituents.

Full text

PDF
546

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashton H., Stepney R., Thompson J. W. Should intake of carbon monoxide be used as a guide to intake of other smoke constituents? Br Med J (Clin Res Ed) 1981 Jan 3;282(6257):10–13. doi: 10.1136/bmj.282.6257.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benowitz N. L., Hall S. M., Herning R. I., Jacob P., 3rd, Jones R. T., Osman A. L. Smokers of low-yield cigarettes do not consume less nicotine. N Engl J Med. 1983 Jul 21;309(3):139–142. doi: 10.1056/NEJM198307213090303. [DOI] [PubMed] [Google Scholar]
  3. Benowitz N. L., Jacob P., 3rd, Yu L., Talcott R., Hall S., Jones R. T. Reduced tar, nicotine, and carbon monoxide exposure while smoking ultralow- but not low-yield cigarettes. JAMA. 1986 Jul 11;256(2):241–246. [PubMed] [Google Scholar]
  4. Castelli W. P., Garrison R. J., Dawber T. R., McNamara P. M., Feinleib M., Kannel W. B. The filter cigarette and coronary heart disease: the Framingham study. Lancet. 1981 Jul 18;2(8238):109–113. doi: 10.1016/s0140-6736(81)90297-x. [DOI] [PubMed] [Google Scholar]
  5. Farquhar J. W., Fortmann S. P., Maccoby N., Haskell W. L., Williams P. T., Flora J. A., Taylor C. B., Brown B. W., Jr, Solomon D. S., Hulley S. B. The Stanford Five-City Project: design and methods. Am J Epidemiol. 1985 Aug;122(2):323–334. doi: 10.1093/oxfordjournals.aje.a114104. [DOI] [PubMed] [Google Scholar]
  6. Fortmann S. P., Rogers T., Vranizan K., Haskell W. L., Solomon D. S., Farquhar J. W. Indirect measures of cigarette use: expired-air carbon monoxide versus plasma thiocyanate. Prev Med. 1984 Jan;13(1):127–135. doi: 10.1016/0091-7435(84)90045-8. [DOI] [PubMed] [Google Scholar]
  7. Gust S. W., Pickens R. W. Does cigarette nicotine yield affect puff volume? Clin Pharmacol Ther. 1982 Oct;32(4):418–422. doi: 10.1038/clpt.1982.182. [DOI] [PubMed] [Google Scholar]
  8. Heliövaara M., Karvonen M. J., Punsar S., Rautanen Y., Haapakoski J. Serum thiocyanate concentration and cigarette smoking in relation to overall mortality and to deaths from coronary heart disease and lung cancer. J Chronic Dis. 1981;34(7):305–311. doi: 10.1016/0021-9681(81)90068-0. [DOI] [PubMed] [Google Scholar]
  9. Herning R. I., Jones R. T., Benowitz N. L., Mines A. H. How a cigarette is smoked determines blood nicotine levels. Clin Pharmacol Ther. 1983 Jan;33(1):84–90. doi: 10.1038/clpt.1983.12. [DOI] [PubMed] [Google Scholar]
  10. Kanzler M., Jaffe J. H., Nee J. Low nicotine cigarettes: cigarette consumption and breath carbon monoxide after one year. Clin Pharmacol Ther. 1983 Sep;34(3):408–415. doi: 10.1038/clpt.1983.188. [DOI] [PubMed] [Google Scholar]
  11. Kaufman D. W., Helmrich S. P., Rosenberg L., Miettinen O. S., Shapiro S. Nicotine and carbon monoxide content of cigarette smoke and the risk of myocardial infarction in young men. N Engl J Med. 1983 Feb 24;308(8):409–413. doi: 10.1056/NEJM198302243080801. [DOI] [PubMed] [Google Scholar]
  12. Kozlowski L. T., Rickert W. S., Pope M. A., Robinson J. C., Frecker R. C. Estimating the yield to smokers of tar, nicotine, and carbon monoxide from the 'lowest yield' ventilated filter-cigarettes. Br J Addict. 1982 Jun;77(2):159–165. doi: 10.1111/j.1360-0443.1982.tb01417.x. [DOI] [PubMed] [Google Scholar]
  13. Lee P. N., Garfinkel L. Mortality and type of cigarette smoked. J Epidemiol Community Health. 1981 Mar;35(1):16–22. doi: 10.1136/jech.35.1.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McGill H. C., Jr Potential mechanisms for the augmentation of atherosclerosis and atherosclerotic disease by cigarette smoking. Prev Med. 1979 May;8(3):390–403. doi: 10.1016/0091-7435(79)90016-1. [DOI] [PubMed] [Google Scholar]
  15. Pettigrew A. R., Fell G. S. Microdiffusion method for estimation of cyanide in whole blood and its application to the study of conversion of cyanide to thiocyanate. Clin Chem. 1973 May;19(5):466–471. [PubMed] [Google Scholar]
  16. Pettigrew A. R., Fell G. S. Simplified colorimetric determination of thiocyanate in biological fluids, and its application to investigation of the toxic amblyopias. Clin Chem. 1972 Sep;18(9):996–1000. [PubMed] [Google Scholar]
  17. RINGOLD A., GOLDSMITH J. R., HELWIG H. L., FINN R., SCHUETTE F. Estimating recent carbon monoxide exposures. A rapid method. Arch Environ Health. 1962 Oct;5:308–318. doi: 10.1080/00039896.1962.10663288. [DOI] [PubMed] [Google Scholar]
  18. Rickert W. S., Robinson J. C. Estimating the hazards of less hazardous cigarettes. II. Study of cigarette yields of nicotine, carbon monoxide, and hydrogen cyanide in relation to levels of cotinine, carboxyhemoglobin, and thiocyanate in smokers. J Toxicol Environ Health. 1981 Mar-Apr;7(3-4):391–403. doi: 10.1080/15287398109529990. [DOI] [PubMed] [Google Scholar]
  19. Robinson J. C., Young J. C., Rickert W. S. A comparative study of the amount of smoke absorbed from low yield ('less hazardous') cigarettes. Part 1: Non-invasive measures. Br J Addict. 1982 Dec;77(4):383–397. doi: 10.1111/j.1360-0443.1982.tb02470.x. [DOI] [PubMed] [Google Scholar]
  20. Robinson J. C., Young J. C., Rickert W. S., Fey G., Kozlowski L. T. A comparative study of the amount of smoke absorbed from low yield ('less hazardous') cigarettes. Part 2: Invasive measures. Br J Addict. 1983 Mar;78(1):79–87. doi: 10.1111/j.1360-0443.1983.tb02483.x. [DOI] [PubMed] [Google Scholar]
  21. Russell M. A., Jarvis M. J., Feyerabend C., Saloojee Y. Reduction of tar, nicotine and carbon monoxide intake in low tar smokers. J Epidemiol Community Health. 1986 Mar;40(1):80–85. doi: 10.1136/jech.40.1.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Russell M. A., Jarvis M., Iyer R., Feyerabend C. Relation of nicotine yield of cigarettes to blood nicotine concentrations in smokers. Br Med J. 1980 Apr 5;280(6219):972–976. doi: 10.1136/bmj.280.6219.972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Russell M. A., Sutton S. R., Iyer R., Feyerabend C., Vesey C. J. Long-term switching to low-tar low-nicotine cigarettes. Br J Addict. 1982 Jun;77(2):145–158. doi: 10.1111/j.1360-0443.1982.tb01416.x. [DOI] [PubMed] [Google Scholar]
  24. Schievelbein H. Evaluation of the role of carbon monoxide and nicotine in the pathogenesis of arteriosclerosis and cardiovascular disease. Prev Med. 1979 May;8(3):379–389. doi: 10.1016/0091-7435(79)90015-x. [DOI] [PubMed] [Google Scholar]
  25. Stepney R. Exposure to carbon monoxide in smokers of middle- and low-tar cigarettes. Br J Dis Chest. 1982 Oct;76(4):390–396. doi: 10.1016/0007-0971(82)90075-4. [DOI] [PubMed] [Google Scholar]
  26. Stepney R. Human smoking behavior and the development of dependence on tobacco smoking. Pharmacol Ther. 1981;15(2):183–206. doi: 10.1016/0163-7258(81)90041-3. [DOI] [PubMed] [Google Scholar]
  27. Su C. Actions of nicotine and smoking on circulation. Pharmacol Ther. 1982;17(1):129–141. doi: 10.1016/0163-7258(82)90050-x. [DOI] [PubMed] [Google Scholar]
  28. Sutton S. R., Russell M. A., Iyer R., Feyerabend C., Saloojee Y. Relationship between cigarette yields, puffing patterns, and smoke intake: evidence for tar compensation? 1982 Aug 28-Sep 4Br Med J (Clin Res Ed) 285(6342):600–603. doi: 10.1136/bmj.285.6342.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vogt T. M., Selvin S., Widdowson G., Hulley S. B. Expired air carbon monoxide and serum thiocyanate as objective measures of cigarette exposure. Am J Public Health. 1977 Jun;67(6):545–549. doi: 10.2105/ajph.67.6.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vutuc C., Kunze M. Lung cancer risk in women in relation to tar yields of cigarettes. Prev Med. 1982 Nov;11(6):713–716. doi: 10.1016/0091-7435(82)90033-0. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Public Health are provided here courtesy of American Public Health Association

RESOURCES