The crystal and molecular structure of 2-amino-4-ferrocenylthiazole has been determined. The crystal packing features intermolecular N—H⋯N and C—H⋯π interactions.
Keywords: crystal structure, ferrocene, thiazole, aminothiazole
Abstract
The title compound, [Fe(C5H5)(C8H7N2S)], was synthesized by the direct reaction of acetylferrocene, thiourea and resublimed iodine. The structure shows one molecule in the asymmetric unit. The aminothiazole ring makes an angle of 14.53 (13)° with the ferrocenyl ring to which it is attached. In the crystal, pairs of complex molecules interact via intermolecular N—H⋯N hydrogen bonds, forming a cyclic dimer which then interacts with other dimers through C—H⋯π interactions.
1. Chemical context
Recently, the synthesis of new hybrid compounds based on a ferrocenyl group linked to a five-membered heterocyclic unit has drawn attention (Sánchez-Rodríguez et al., 2017 ▸; Shao et al., 2006a
▸). One important five-membered heterocycle is 2-aminothiazole, which is a versatile scaffold extensively used in various branches of chemistry including dyes and in the pharmaceutical industries. 2-Aminothiazole derivatives are widely used by medicinal chemists (Das et al., 2016 ▸) and have various applications in medicinal, agriculture and analytical chemistry. They are known to exhibit a wide variety of biological activities such as antiviral, antibacterial, antifungal, antitubercular, herbicidal and insecticidal (Mishra et al., 2017 ▸; Ji Ram et al., 2019 ▸; Dondoni, 2010 ▸). Thiazoles are also used as precursors or intermediates for the synthesis of a variety of heterocyclic compounds (Zeng et al., 2003 ▸). We report here the crystal and molecular structure of 2-amino-4-ferrocenylthiazole, which has not previously been reported.
2. Structural commentary
The title compound crystallizes in the monoclinic system, space group P21/c. The asymmetric unit contains one molecular unit as shown in Fig. 1 ▸. The C15—S11—C12 bond angle of 88.6 (2)° reflects the presence of a non-delocalized lone pair of electrons and is similar to that observed in other thiazoles. The length of the C12=N13 double bond is 1.306 (4) Å. The torsion angles in the amino substituted thiazole ring are: 1.1 (3)° for N13—C12—S11—C15 and 1.7 (4)° for N13—C14—C15—S11. All bond lengths and angles confirm the sp 2 hybridization for all C and N atoms.
Figure 1.
Structure of 2-amino-4-ferrocenylthiazole. Displacement ellipsoids are drawn at the 30% probability level.
The ferrocene moiety is in the staggered conformation. The influence of the steric hindrance caused by the organic groups is reflected in the torsion angle C5—C1—C14—C15, 17.0 (5)°, compared with the C2—C1—C14—N13 torsion angle of 13.2 (4)°. The steric effect is also evident in the dihedral angle of 14.77 (17)° subtended by the planes of the heterocycle (C14/C15/S11/C12/N13) and the Cp plane (C1–C5).
3. Supramolecular features
The structure is stabilized by intermolecular hydrogen bonding (N—H⋯N) and C—H⋯π interactions. For C10—H10⋯Cg(C1–C5) the H-to-ring distance is 2.89 Å, as shown in Table 1 ▸. As a result of intermolecular N—H⋯N interactions, a pseudo six-membered (N16/C12/N13/N16/C12/N13) ring is formed and this hydrogen bond, in addition to the C—H⋯π interaction, produces a packing into supramolecular layers parallel to the bc plane (Fig. 2 ▸). The structure presents very similar C=N distances and angles in the thiazole ring, as reported earlier for some similar compounds (Sánchez-Rodríguez et al., 2017 ▸; Shao et al., 2006b ▸).
Table 1. Hydrogen-bond geometry (Å, °).
Cg1 is the centroid of the C1–C5 Cp ring.
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
N16—H16A⋯N13i | 0.84 (2) | 2.14 (2) | 2.976 (4) | 173 (4) |
C10—H10⋯Cg1ii | 0.98 | 2.89 | 3.703 (3) | 141 |
Symmetry codes: (i)
; (ii)
.
Figure 2.
The packing of the title compound. The dotted lines indicate intermolecular hydrogen bonds. All H atoms not involved in these interactions have been omitted for clarity.
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.43, update of November 2021; Groom et al., 2016 ▸) for 4-ferrocenyl thiazoles gave eight hits. In six cases (GAVFIT, Yu et al., 2005 ▸; GAVFIT01, Yu et al., 2007 ▸; QAYSAL, Shao et al., 2006b ▸; QAYSAL01, Shao et al., 2006a ▸; RAPQAB, Shao et al., 2005 ▸; RAPQAB01, Shao et al., 2006a ▸), the thiazole ring is substituted. In two cases there is no substitution in the thiazole ring (GUPKAG, Xu et al., 2020 ▸ and PAWWEQ, Plazuk et al., 2005 ▸) with PAWWEQ being a diferrocenyl compound. In all eight cases, the bond lengths and angles confirm the sp2 hybridization for all C and N atoms.
5. Synthesis and crystallization
The title compound was synthesized according to the reported method (Chopra et al., 2015 ▸). The crude product was purified by column chromatography over silica and suitable crystals were obtained after recrystallization of the solid from a 1:1 hexane-dichloromethane mixture by slow evaporation. The compound 2-amino-4-ferrocenylthiazole was further characterized by 1H NMR and IR–ATR. FT–IR (ATR, cm−1) ν 3099 (ArCH), 2921 (CH3), 1658 (C=N); 1H NMR (300 MHz, CDCl3): 4.62 (2H, t, subst. Cp); 4.25 (2H, t, subst. Cp); 4.10 (5H, s, subst. Cp); 5.00 (2H, –NH2), 6.35 (1H, C—H).
6. Refinement details
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. N-bound H atoms were refined isotropically with U iso(H) = 1.2U eq(N). C-bound H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined with isotropically U iso(H) = 1.2U eq(C) using a riding model.
Table 2. Experimental details.
Crystal data | |
Chemical formula | [Fe(C5H5)(C8H7N2S)] |
M r | 284.16 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 14.4024 (4), 7.9621 (2), 10.3584 (3) |
β (°) | 104.3453 (13) |
V (Å3) | 1150.80 (5) |
Z | 4 |
Radiation type | Mo Kα |
μ (mm−1) | 1.47 |
Crystal size (mm) | 0.27 × 0.16 × 0.14 |
Data collection | |
Diffractometer | Bruker D8 Venture κ-geometry diffractometer 208039-01 |
Absorption correction | Multi-scan (SADABS; Krause et al., 2015 ▸) |
T min, T max | 0.656, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17487, 3214, 1805 |
R int | 0.102 |
(sin θ/λ)max (Å−1) | 0.694 |
Refinement | |
R[F 2 > 2σ(F 2)], wR(F 2), S | 0.050, 0.091, 1.02 |
No. of reflections | 3214 |
No. of parameters | 160 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.44, −0.43 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022007228/dj2046sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022007228/dj2046Isup3.hkl
CCDC reference: 1841501
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
[Fe(C5H5)(C8H7N2S)] | F(000) = 584 |
Mr = 284.16 | Dx = 1.640 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 14.4024 (4) Å | Cell parameters from 5893 reflections |
b = 7.9621 (2) Å | θ = 2.9–30.0° |
c = 10.3584 (3) Å | µ = 1.47 mm−1 |
β = 104.3453 (13)° | T = 298 K |
V = 1150.80 (5) Å3 | Prism, orange |
Z = 4 | 0.27 × 0.16 × 0.14 mm |
Data collection
Bruker D8 Venture κ-geometry diffractometer 208039-01 | 3214 independent reflections |
Radiation source: micro-focus X-ray source | 1805 reflections with I > 2σ(I) |
Helios multilayer mirror monochromator | Rint = 0.102 |
Detector resolution: 52.0833 pixels mm-1 | θmax = 29.6°, θmin = 2.9° |
φ and ω–scans | h = −19→19 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −11→11 |
Tmin = 0.656, Tmax = 0.746 | l = −14→14 |
17487 measured reflections |
Refinement
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: mixed |
wR(F2) = 0.091 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.024P)2 + 0.7338P] where P = (Fo2 + 2Fc2)/3 |
3214 reflections | (Δ/σ)max < 0.001 |
160 parameters | Δρmax = 0.44 e Å−3 |
1 restraint | Δρmin = −0.43 e Å−3 |
Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.17036 (3) | 0.50999 (5) | 0.21675 (4) | 0.02688 (13) | |
C1 | 0.2361 (2) | 0.7055 (3) | 0.3316 (3) | 0.0293 (7) | |
C2 | 0.2072 (2) | 0.5816 (4) | 0.4119 (3) | 0.0347 (7) | |
H2 | 0.249851 | 0.519784 | 0.484765 | 0.042* | |
C3 | 0.1066 (2) | 0.5605 (4) | 0.3683 (3) | 0.0378 (8) | |
H3 | 0.067801 | 0.482058 | 0.405807 | 0.045* | |
C5 | 0.1513 (2) | 0.7608 (4) | 0.2371 (3) | 0.0354 (8) | |
H5 | 0.148594 | 0.845906 | 0.167931 | 0.043* | |
C4 | 0.0721 (2) | 0.6712 (4) | 0.2603 (3) | 0.0390 (8) | |
H4 | 0.005144 | 0.683301 | 0.210031 | 0.047* | |
C6 | 0.2513 (2) | 0.4562 (4) | 0.0875 (3) | 0.0390 (8) | |
H6 | 0.301224 | 0.528302 | 0.067788 | 0.047* | |
C7 | 0.2651 (2) | 0.3335 (4) | 0.1884 (3) | 0.0401 (8) | |
H7 | 0.326028 | 0.304522 | 0.250824 | 0.048* | |
C8 | 0.1747 (2) | 0.2590 (4) | 0.1828 (3) | 0.0436 (9) | |
H8 | 0.162060 | 0.169787 | 0.241401 | 0.052* | |
C9 | 0.1063 (2) | 0.3352 (4) | 0.0782 (3) | 0.0417 (8) | |
H9 | 0.037655 | 0.309044 | 0.051734 | 0.050* | |
C10 | 0.1538 (2) | 0.4568 (4) | 0.0194 (3) | 0.0388 (8) | |
H10 | 0.123912 | 0.530116 | −0.055375 | 0.047* | |
S11 | 0.48146 (6) | 0.92268 (11) | 0.31997 (10) | 0.0468 (3) | |
C12 | 0.4914 (2) | 0.7406 (4) | 0.4136 (3) | 0.0340 (7) | |
N13 | 0.41026 (17) | 0.6692 (3) | 0.4162 (3) | 0.0313 (6) | |
C14 | 0.3340 (2) | 0.7625 (4) | 0.3407 (3) | 0.0301 (7) | |
C15 | 0.3588 (2) | 0.9019 (4) | 0.2849 (3) | 0.0407 (8) | |
H15 | 0.315506 | 0.977392 | 0.234051 | 0.049* | |
N16 | 0.5779 (2) | 0.6798 (4) | 0.4780 (4) | 0.0506 (9) | |
H16A | 0.580 (2) | 0.585 (3) | 0.514 (3) | 0.061* | |
H16B | 0.627 (2) | 0.732 (4) | 0.469 (4) | 0.061* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0253 (2) | 0.0294 (2) | 0.0264 (2) | 0.00356 (18) | 0.00735 (17) | −0.0012 (2) |
C1 | 0.0303 (17) | 0.0283 (16) | 0.0294 (18) | 0.0051 (12) | 0.0075 (14) | −0.0029 (13) |
C2 | 0.0349 (18) | 0.0426 (18) | 0.0263 (18) | 0.0062 (14) | 0.0071 (14) | −0.0018 (15) |
C3 | 0.0341 (18) | 0.050 (2) | 0.035 (2) | 0.0000 (15) | 0.0180 (15) | −0.0075 (16) |
C5 | 0.0387 (19) | 0.0287 (16) | 0.036 (2) | 0.0100 (14) | 0.0042 (16) | −0.0040 (14) |
C4 | 0.0283 (18) | 0.048 (2) | 0.039 (2) | 0.0094 (15) | 0.0060 (15) | −0.0144 (17) |
C6 | 0.042 (2) | 0.040 (2) | 0.042 (2) | 0.0015 (14) | 0.0252 (17) | −0.0056 (15) |
C7 | 0.0376 (19) | 0.0400 (19) | 0.044 (2) | 0.0147 (15) | 0.0119 (16) | −0.0086 (16) |
C8 | 0.056 (2) | 0.0291 (17) | 0.050 (2) | 0.0014 (16) | 0.0215 (19) | 0.0012 (16) |
C9 | 0.0375 (19) | 0.0440 (19) | 0.042 (2) | −0.0034 (16) | 0.0062 (17) | −0.0154 (17) |
C10 | 0.045 (2) | 0.044 (2) | 0.0284 (18) | 0.0079 (15) | 0.0102 (16) | −0.0009 (15) |
S11 | 0.0426 (5) | 0.0386 (5) | 0.0569 (6) | −0.0050 (4) | 0.0081 (4) | 0.0175 (4) |
C12 | 0.0351 (18) | 0.0308 (16) | 0.035 (2) | −0.0025 (14) | 0.0062 (15) | 0.0041 (14) |
N13 | 0.0284 (14) | 0.0299 (13) | 0.0348 (16) | 0.0007 (11) | 0.0064 (12) | 0.0043 (12) |
C14 | 0.0329 (17) | 0.0277 (16) | 0.0289 (18) | 0.0020 (13) | 0.0060 (14) | −0.0040 (13) |
C15 | 0.0385 (19) | 0.0346 (18) | 0.045 (2) | 0.0035 (14) | 0.0029 (16) | 0.0112 (16) |
N16 | 0.0283 (16) | 0.0447 (18) | 0.074 (2) | −0.0057 (13) | 0.0045 (16) | 0.0265 (17) |
Geometric parameters (Å, º)
Fe1—C6 | 2.027 (3) | C6—C10 | 1.408 (4) |
Fe1—C7 | 2.030 (3) | C6—C7 | 1.408 (4) |
Fe1—C8 | 2.033 (3) | C6—H6 | 0.9800 |
Fe1—C5 | 2.034 (3) | C7—C8 | 1.419 (4) |
Fe1—C2 | 2.040 (3) | C7—H7 | 0.9800 |
Fe1—C4 | 2.043 (3) | C8—C9 | 1.408 (4) |
Fe1—C1 | 2.043 (3) | C8—H8 | 0.9800 |
Fe1—C10 | 2.043 (3) | C9—C10 | 1.409 (4) |
Fe1—C3 | 2.045 (3) | C9—H9 | 0.9800 |
Fe1—C9 | 2.047 (3) | C10—H10 | 0.9800 |
C1—C2 | 1.417 (4) | S11—C15 | 1.721 (3) |
C1—C5 | 1.432 (4) | S11—C12 | 1.730 (3) |
C1—C14 | 1.462 (4) | C12—N13 | 1.306 (4) |
C2—C3 | 1.417 (4) | C12—N16 | 1.349 (4) |
C2—H2 | 0.9800 | N13—C14 | 1.394 (3) |
C3—C4 | 1.414 (4) | C14—C15 | 1.340 (4) |
C3—H3 | 0.9800 | C15—H15 | 0.9300 |
C5—C4 | 1.416 (4) | N16—H16A | 0.84 (2) |
C5—H5 | 0.9800 | N16—H16B | 0.84 (2) |
C4—H4 | 0.9800 | ||
C6—Fe1—C7 | 40.61 (12) | C4—C3—H3 | 126.0 |
C6—Fe1—C8 | 68.33 (13) | C2—C3—H3 | 126.0 |
C7—Fe1—C8 | 40.88 (12) | Fe1—C3—H3 | 126.0 |
C6—Fe1—C5 | 112.99 (13) | C4—C5—C1 | 108.4 (3) |
C7—Fe1—C5 | 143.86 (14) | C4—C5—Fe1 | 70.02 (17) |
C8—Fe1—C5 | 173.68 (13) | C1—C5—Fe1 | 69.79 (16) |
C6—Fe1—C2 | 131.49 (13) | C4—C5—H5 | 125.8 |
C7—Fe1—C2 | 108.54 (13) | C1—C5—H5 | 125.8 |
C8—Fe1—C2 | 115.77 (13) | Fe1—C5—H5 | 125.8 |
C5—Fe1—C2 | 68.37 (13) | C3—C4—C5 | 107.9 (3) |
C6—Fe1—C4 | 145.32 (14) | C3—C4—Fe1 | 69.85 (17) |
C7—Fe1—C4 | 173.96 (14) | C5—C4—Fe1 | 69.34 (17) |
C8—Fe1—C4 | 135.13 (14) | C3—C4—H4 | 126.0 |
C5—Fe1—C4 | 40.64 (12) | C5—C4—H4 | 126.0 |
C2—Fe1—C4 | 68.26 (12) | Fe1—C4—H4 | 126.0 |
C6—Fe1—C1 | 106.63 (13) | C10—C6—C7 | 108.3 (3) |
C7—Fe1—C1 | 112.38 (13) | C10—C6—Fe1 | 70.40 (18) |
C8—Fe1—C1 | 145.08 (13) | C7—C6—Fe1 | 69.82 (18) |
C5—Fe1—C1 | 41.12 (11) | C10—C6—H6 | 125.9 |
C2—Fe1—C1 | 40.62 (12) | C7—C6—H6 | 125.9 |
C4—Fe1—C1 | 68.84 (12) | Fe1—C6—H6 | 125.9 |
C6—Fe1—C10 | 40.46 (12) | C6—C7—C8 | 107.5 (3) |
C7—Fe1—C10 | 68.14 (13) | C6—C7—Fe1 | 69.56 (17) |
C8—Fe1—C10 | 67.91 (13) | C8—C7—Fe1 | 69.66 (18) |
C5—Fe1—C10 | 108.79 (13) | C6—C7—H7 | 126.2 |
C2—Fe1—C10 | 170.67 (13) | C8—C7—H7 | 126.2 |
C4—Fe1—C10 | 115.84 (13) | Fe1—C7—H7 | 126.2 |
C1—Fe1—C10 | 131.53 (13) | C9—C8—C7 | 108.1 (3) |
C6—Fe1—C3 | 171.70 (13) | C9—C8—Fe1 | 70.36 (18) |
C7—Fe1—C3 | 133.85 (14) | C7—C8—Fe1 | 69.46 (18) |
C8—Fe1—C3 | 111.39 (13) | C9—C8—H8 | 125.9 |
C5—Fe1—C3 | 68.26 (13) | C7—C8—H8 | 125.9 |
C2—Fe1—C3 | 40.58 (12) | Fe1—C8—H8 | 125.9 |
C4—Fe1—C3 | 40.48 (13) | C8—C9—C10 | 107.9 (3) |
C1—Fe1—C3 | 68.58 (13) | C8—C9—Fe1 | 69.26 (18) |
C10—Fe1—C3 | 147.70 (13) | C10—C9—Fe1 | 69.70 (18) |
C6—Fe1—C9 | 68.10 (13) | C8—C9—H9 | 126.1 |
C7—Fe1—C9 | 68.31 (13) | C10—C9—H9 | 126.1 |
C8—Fe1—C9 | 40.38 (12) | Fe1—C9—H9 | 126.1 |
C5—Fe1—C9 | 133.72 (13) | C6—C10—C9 | 108.2 (3) |
C2—Fe1—C9 | 147.76 (14) | C6—C10—Fe1 | 69.14 (18) |
C4—Fe1—C9 | 111.42 (13) | C9—C10—Fe1 | 70.01 (18) |
C1—Fe1—C9 | 171.57 (13) | C6—C10—H10 | 125.9 |
C10—Fe1—C9 | 40.29 (13) | C9—C10—H10 | 125.9 |
C3—Fe1—C9 | 117.46 (14) | Fe1—C10—H10 | 125.9 |
C2—C1—C5 | 106.9 (3) | C15—S11—C12 | 88.62 (15) |
C2—C1—C14 | 126.6 (3) | N13—C12—N16 | 123.7 (3) |
C5—C1—C14 | 126.4 (3) | N13—C12—S11 | 115.2 (2) |
C2—C1—Fe1 | 69.56 (17) | N16—C12—S11 | 121.1 (2) |
C5—C1—Fe1 | 69.09 (16) | C12—N13—C14 | 110.0 (3) |
C14—C1—Fe1 | 125.0 (2) | C15—C14—N13 | 115.2 (3) |
C3—C2—C1 | 108.7 (3) | C15—C14—C1 | 125.8 (3) |
C3—C2—Fe1 | 69.93 (17) | N13—C14—C1 | 119.0 (3) |
C1—C2—Fe1 | 69.82 (17) | C14—C15—S11 | 111.0 (2) |
C3—C2—H2 | 125.6 | C14—C15—H15 | 124.5 |
C1—C2—H2 | 125.6 | S11—C15—H15 | 124.5 |
Fe1—C2—H2 | 125.6 | C12—N16—H16A | 118 (2) |
C4—C3—C2 | 108.0 (3) | C12—N16—H16B | 118 (2) |
C4—C3—Fe1 | 69.67 (18) | H16A—N16—H16B | 123 (3) |
C2—C3—Fe1 | 69.49 (17) | ||
C5—C1—C2—C3 | 0.0 (3) | C7—C8—C9—C10 | −0.2 (4) |
C14—C1—C2—C3 | −178.4 (3) | Fe1—C8—C9—C10 | 59.2 (2) |
Fe1—C1—C2—C3 | −59.3 (2) | C7—C8—C9—Fe1 | −59.4 (2) |
C5—C1—C2—Fe1 | 59.2 (2) | C7—C6—C10—C9 | 0.5 (3) |
C14—C1—C2—Fe1 | −119.1 (3) | Fe1—C6—C10—C9 | −59.3 (2) |
C1—C2—C3—C4 | 0.0 (3) | C7—C6—C10—Fe1 | 59.8 (2) |
Fe1—C2—C3—C4 | −59.2 (2) | C8—C9—C10—C6 | −0.2 (4) |
C1—C2—C3—Fe1 | 59.2 (2) | Fe1—C9—C10—C6 | 58.8 (2) |
C2—C1—C5—C4 | 0.0 (3) | C8—C9—C10—Fe1 | −58.9 (2) |
C14—C1—C5—C4 | 178.4 (3) | C15—S11—C12—N13 | 1.1 (3) |
Fe1—C1—C5—C4 | 59.6 (2) | C15—S11—C12—N16 | −179.0 (3) |
C2—C1—C5—Fe1 | −59.5 (2) | N16—C12—N13—C14 | 179.7 (3) |
C14—C1—C5—Fe1 | 118.8 (3) | S11—C12—N13—C14 | −0.4 (3) |
C2—C3—C4—C5 | 0.0 (3) | C12—N13—C14—C15 | −0.9 (4) |
Fe1—C3—C4—C5 | −59.1 (2) | C12—N13—C14—C1 | −179.3 (3) |
C2—C3—C4—Fe1 | 59.1 (2) | C2—C1—C14—C15 | −165.0 (3) |
C1—C5—C4—C3 | 0.0 (3) | C5—C1—C14—C15 | 17.0 (5) |
Fe1—C5—C4—C3 | 59.4 (2) | Fe1—C1—C14—C15 | 105.6 (3) |
C1—C5—C4—Fe1 | −59.4 (2) | C2—C1—C14—N13 | 13.2 (4) |
C10—C6—C7—C8 | −0.6 (3) | C5—C1—C14—N13 | −164.9 (3) |
Fe1—C6—C7—C8 | 59.6 (2) | Fe1—C1—C14—N13 | −76.2 (3) |
C10—C6—C7—Fe1 | −60.1 (2) | N13—C14—C15—S11 | 1.7 (4) |
C6—C7—C8—C9 | 0.5 (4) | C1—C14—C15—S11 | 180.0 (2) |
Fe1—C7—C8—C9 | 60.0 (2) | C12—S11—C15—C14 | −1.6 (3) |
C6—C7—C8—Fe1 | −59.5 (2) |
Hydrogen-bond geometry (Å, º)
Cg1 is the centroid of the C1–C5 Cp ring.
D—H···A | D—H | H···A | D···A | D—H···A |
N16—H16A···N13i | 0.84 (2) | 2.14 (2) | 2.976 (4) | 173 (4) |
C10—H10···Cg1ii | 0.98 | 2.89 | 3.703 (3) | 141 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+3/2, z−1/2.
Funding Statement
We thank the DGAPA (project IN209020) for financial support.
References
- Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chopra, R., de Kock, C., Smith, P., Chibale, K. & Singh, K. (2015). Eur. J. Med. Chem. 100, 1–9. [DOI] [PubMed]
- Das, D., Sikdar, P. & Bairagi, M. (2016). Eur. J. Med. Chem. 109, 89–98. [DOI] [PubMed]
- Dondoni, A. (2010). Org. Biomol. Chem. 8, 3366–3385. [DOI] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Ji Ram, V., Sethi, A., Nath, M. & Pratap, R. (2019). The Chemistry of Heterocycles, Vol. 5. pp. 149–478. Amsterdam: Elsevier.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
- Mishra, R., Sharma, P. K., Verma, P. K., Tomer, I., Mathur, G. & Dhakad, P. K. (2017). J. Heterocycl. Chem. 54, 2103–2116.
- Plażuk, D., Zakrzewski, J., Rybarczyk-Pirek, A. & Domagała, S. (2005). J. Organomet. Chem. 690, 4302–4308.
- Sánchez-Rodríguez, E. P., Hochberger-Roa, F., Corona-Sánchez, R., Barquera-Lozada, J. E., Toscano, R. A., Urrutigoïty, M., Gouygou, M., Ortega-Alfaro, M. C. & López-Cortés, J. G. (2017). Dalton Trans. 46, 1510–1519. [DOI] [PubMed]
- Shao, L., Hu, Y., Zhou, X., Zhang, Q. & Fang, J.-X. (2005). Acta Cryst. E61, m1269–m1271.
- Shao, L., Zhou, X., Hu, Y. & Fang, J.-X. (2006b). Acta Cryst. E62, m49–m51.
- Shao, L., Zhou, X., Hu, Y., Jin, Z., Liu, J. & Fang, J. X. (2006a). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 36, 325–330.
- Sheldrick, G. M. (2013). CIFTAB. University of Göttingen, Germany.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Siemens (1998). XP in SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Xu, X., Zheng, B., Deng, H., Zhang, X. & Shuai, Q. (2020). Microchem. J. 158, 105257.
- Yu, H., Shao, L. & Fang, J. (2007). J. Organomet. Chem. 692, 991–996.
- Yu, H.-B., Shao, L., Jin, Z., Liu, J.-B. & Fang, J.-X. (2005). Acta Cryst. E61, m2031–m2032.
- Zeng, R.-S., Zou, J.-P., Zhi, S.-J., Chen, J. & Shen, Q. (2003). Org. Lett. 5, 1657–1659. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022007228/dj2046sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022007228/dj2046Isup3.hkl
CCDC reference: 1841501
Additional supporting information: crystallographic information; 3D view; checkCIF report