Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Jul 19;78(Pt 8):818–820. doi: 10.1107/S2056989022007228

2-Amino-4-ferrocenyl­thia­zole

Bertin Anzaldo a, Pankaj Sharma a,*, Claudia P Villamizar a, Rene Gutierrez Perez b, Rubén A Toscano a
Editor: G Diaz de Delgadoc
PMCID: PMC9361361  PMID: 35974822

The crystal and mol­ecular structure of 2-amino-4-ferrocenyl­thia­zole has been determined. The crystal packing features inter­molecular N—H⋯N and C—H⋯π inter­actions.

Keywords: crystal structure, ferrocene, thia­zole, amino­thia­zole

Abstract

The title compound, [Fe(C5H5)(C8H7N2S)], was synthesized by the direct reaction of acetyl­ferrocene, thio­urea and resublimed iodine. The structure shows one mol­ecule in the asymmetric unit. The amino­thia­zole ring makes an angle of 14.53 (13)° with the ferrocenyl ring to which it is attached. In the crystal, pairs of complex mol­ecules inter­act via inter­molecular N—H⋯N hydrogen bonds, forming a cyclic dimer which then inter­acts with other dimers through C—H⋯π inter­actions.

1. Chemical context

Recently, the synthesis of new hybrid compounds based on a ferrocenyl group linked to a five-membered heterocyclic unit has drawn attention (Sánchez-Rodríguez et al., 2017; Shao et al., 2006a ). One important five-membered heterocycle is 2-amino­thia­zole, which is a versatile scaffold extensively used in various branches of chemistry including dyes and in the pharmaceutical industries. 2-Amino­thia­zole derivatives are widely used by medicinal chemists (Das et al., 2016) and have various applications in medicinal, agriculture and analytical chemistry. They are known to exhibit a wide variety of biological activities such as anti­viral, anti­bacterial, anti­fungal, anti­tubercular, herbicidal and insecticidal (Mishra et al., 2017; Ji Ram et al., 2019; Dondoni, 2010). Thia­zoles are also used as precursors or inter­mediates for the synthesis of a variety of heterocyclic compounds (Zeng et al., 2003). We report here the crystal and mol­ecular structure of 2-amino-4-ferrocenyl­thia­zole, which has not previously been reported. 1.

2. Structural commentary

The title compound crystallizes in the monoclinic system, space group P21/c. The asymmetric unit contains one mol­ecular unit as shown in Fig. 1. The C15—S11—C12 bond angle of 88.6 (2)° reflects the presence of a non-delocalized lone pair of electrons and is similar to that observed in other thia­zoles. The length of the C12=N13 double bond is 1.306 (4) Å. The torsion angles in the amino substituted thia­zole ring are: 1.1 (3)° for N13—C12—S11—C15 and 1.7 (4)° for N13—C14—C15—S11. All bond lengths and angles confirm the sp 2 hybridization for all C and N atoms.

Figure 1.

Figure 1

Structure of 2-amino-4-ferrocenyl­thia­zole. Displacement ellipsoids are drawn at the 30% probability level.

The ferrocene moiety is in the staggered conformation. The influence of the steric hindrance caused by the organic groups is reflected in the torsion angle C5—C1—C14—C15, 17.0 (5)°, compared with the C2—C1—C14—N13 torsion angle of 13.2 (4)°. The steric effect is also evident in the dihedral angle of 14.77 (17)° subtended by the planes of the heterocycle (C14/C15/S11/C12/N13) and the Cp plane (C1–C5).

3. Supra­molecular features

The structure is stabilized by inter­molecular hydrogen bonding (N—H⋯N) and C—H⋯π inter­actions. For C10—H10⋯Cg(C1–C5) the H-to-ring distance is 2.89 Å, as shown in Table 1. As a result of inter­molecular N—H⋯N inter­actions, a pseudo six-membered (N16/C12/N13/N16/C12/N13) ring is formed and this hydrogen bond, in addition to the C—H⋯π inter­action, produces a packing into supra­molecular layers parallel to the bc plane (Fig. 2). The structure presents very similar C=N distances and angles in the thia­zole ring, as reported earlier for some similar compounds (Sánchez-Rodríguez et al., 2017; Shao et al., 2006b ).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C5 Cp ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N16—H16A⋯N13i 0.84 (2) 2.14 (2) 2.976 (4) 173 (4)
C10—H10⋯Cg1ii 0.98 2.89 3.703 (3) 141

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 2.

Figure 2

The packing of the title compound. The dotted lines indicate inter­molecular hydrogen bonds. All H atoms not involved in these inter­actions have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43, update of November 2021; Groom et al., 2016) for 4-ferrocenyl thia­zoles gave eight hits. In six cases (GAVFIT, Yu et al., 2005; GAVFIT01, Yu et al., 2007; QAYSAL, Shao et al., 2006b ; QAYSAL01, Shao et al., 2006a ; RAPQAB, Shao et al., 2005; RAPQAB01, Shao et al., 2006a ), the thia­zole ring is substituted. In two cases there is no substitution in the thia­zole ring (GUPKAG, Xu et al., 2020 and PAWWEQ, Plazuk et al., 2005) with PAWWEQ being a diferrocenyl compound. In all eight cases, the bond lengths and angles confirm the sp2 hybridization for all C and N atoms.

5. Synthesis and crystallization

The title compound was synthesized according to the reported method (Chopra et al., 2015). The crude product was purified by column chromatography over silica and suitable crystals were obtained after recrystallization of the solid from a 1:1 hexane-di­chloro­methane mixture by slow evaporation. The compound 2-amino-4-ferrocenyl­thia­zole was further characterized by 1H NMR and IR–ATR. FT–IR (ATR, cm−1) ν 3099 (ArCH), 2921 (CH3), 1658 (C=N); 1H NMR (300 MHz, CDCl3): 4.62 (2H, t, subst. Cp); 4.25 (2H, t, subst. Cp); 4.10 (5H, s, subst. Cp); 5.00 (2H, –NH2), 6.35 (1H, C—H).

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. N-bound H atoms were refined isotropically with U iso(H) = 1.2U eq(N). C-bound H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined with isotropically U iso(H) = 1.2U eq(C) using a riding model.

Table 2. Experimental details.

Crystal data
Chemical formula [Fe(C5H5)(C8H7N2S)]
M r 284.16
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 14.4024 (4), 7.9621 (2), 10.3584 (3)
β (°) 104.3453 (13)
V3) 1150.80 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.47
Crystal size (mm) 0.27 × 0.16 × 0.14
 
Data collection
Diffractometer Bruker D8 Venture κ-geometry diffractometer 208039-01
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.656, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 17487, 3214, 1805
R int 0.102
(sin θ/λ)max−1) 0.694
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.050, 0.091, 1.02
No. of reflections 3214
No. of parameters 160
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.43

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), XP (Siemens, 1998) and CIFTAB (Sheldrick, 2013).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022007228/dj2046sup1.cif

e-78-00818-sup1.cif (536.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022007228/dj2046Isup3.hkl

e-78-00818-Isup3.hkl (256.8KB, hkl)

CCDC reference: 1841501

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Fe(C5H5)(C8H7N2S)] F(000) = 584
Mr = 284.16 Dx = 1.640 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 14.4024 (4) Å Cell parameters from 5893 reflections
b = 7.9621 (2) Å θ = 2.9–30.0°
c = 10.3584 (3) Å µ = 1.47 mm1
β = 104.3453 (13)° T = 298 K
V = 1150.80 (5) Å3 Prism, orange
Z = 4 0.27 × 0.16 × 0.14 mm

Data collection

Bruker D8 Venture κ-geometry diffractometer 208039-01 3214 independent reflections
Radiation source: micro-focus X-ray source 1805 reflections with I > 2σ(I)
Helios multilayer mirror monochromator Rint = 0.102
Detector resolution: 52.0833 pixels mm-1 θmax = 29.6°, θmin = 2.9°
φ and ω–scans h = −19→19
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −11→11
Tmin = 0.656, Tmax = 0.746 l = −14→14
17487 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: mixed
wR(F2) = 0.091 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.024P)2 + 0.7338P] where P = (Fo2 + 2Fc2)/3
3214 reflections (Δ/σ)max < 0.001
160 parameters Δρmax = 0.44 e Å3
1 restraint Δρmin = −0.43 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.17036 (3) 0.50999 (5) 0.21675 (4) 0.02688 (13)
C1 0.2361 (2) 0.7055 (3) 0.3316 (3) 0.0293 (7)
C2 0.2072 (2) 0.5816 (4) 0.4119 (3) 0.0347 (7)
H2 0.249851 0.519784 0.484765 0.042*
C3 0.1066 (2) 0.5605 (4) 0.3683 (3) 0.0378 (8)
H3 0.067801 0.482058 0.405807 0.045*
C5 0.1513 (2) 0.7608 (4) 0.2371 (3) 0.0354 (8)
H5 0.148594 0.845906 0.167931 0.043*
C4 0.0721 (2) 0.6712 (4) 0.2603 (3) 0.0390 (8)
H4 0.005144 0.683301 0.210031 0.047*
C6 0.2513 (2) 0.4562 (4) 0.0875 (3) 0.0390 (8)
H6 0.301224 0.528302 0.067788 0.047*
C7 0.2651 (2) 0.3335 (4) 0.1884 (3) 0.0401 (8)
H7 0.326028 0.304522 0.250824 0.048*
C8 0.1747 (2) 0.2590 (4) 0.1828 (3) 0.0436 (9)
H8 0.162060 0.169787 0.241401 0.052*
C9 0.1063 (2) 0.3352 (4) 0.0782 (3) 0.0417 (8)
H9 0.037655 0.309044 0.051734 0.050*
C10 0.1538 (2) 0.4568 (4) 0.0194 (3) 0.0388 (8)
H10 0.123912 0.530116 −0.055375 0.047*
S11 0.48146 (6) 0.92268 (11) 0.31997 (10) 0.0468 (3)
C12 0.4914 (2) 0.7406 (4) 0.4136 (3) 0.0340 (7)
N13 0.41026 (17) 0.6692 (3) 0.4162 (3) 0.0313 (6)
C14 0.3340 (2) 0.7625 (4) 0.3407 (3) 0.0301 (7)
C15 0.3588 (2) 0.9019 (4) 0.2849 (3) 0.0407 (8)
H15 0.315506 0.977392 0.234051 0.049*
N16 0.5779 (2) 0.6798 (4) 0.4780 (4) 0.0506 (9)
H16A 0.580 (2) 0.585 (3) 0.514 (3) 0.061*
H16B 0.627 (2) 0.732 (4) 0.469 (4) 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0253 (2) 0.0294 (2) 0.0264 (2) 0.00356 (18) 0.00735 (17) −0.0012 (2)
C1 0.0303 (17) 0.0283 (16) 0.0294 (18) 0.0051 (12) 0.0075 (14) −0.0029 (13)
C2 0.0349 (18) 0.0426 (18) 0.0263 (18) 0.0062 (14) 0.0071 (14) −0.0018 (15)
C3 0.0341 (18) 0.050 (2) 0.035 (2) 0.0000 (15) 0.0180 (15) −0.0075 (16)
C5 0.0387 (19) 0.0287 (16) 0.036 (2) 0.0100 (14) 0.0042 (16) −0.0040 (14)
C4 0.0283 (18) 0.048 (2) 0.039 (2) 0.0094 (15) 0.0060 (15) −0.0144 (17)
C6 0.042 (2) 0.040 (2) 0.042 (2) 0.0015 (14) 0.0252 (17) −0.0056 (15)
C7 0.0376 (19) 0.0400 (19) 0.044 (2) 0.0147 (15) 0.0119 (16) −0.0086 (16)
C8 0.056 (2) 0.0291 (17) 0.050 (2) 0.0014 (16) 0.0215 (19) 0.0012 (16)
C9 0.0375 (19) 0.0440 (19) 0.042 (2) −0.0034 (16) 0.0062 (17) −0.0154 (17)
C10 0.045 (2) 0.044 (2) 0.0284 (18) 0.0079 (15) 0.0102 (16) −0.0009 (15)
S11 0.0426 (5) 0.0386 (5) 0.0569 (6) −0.0050 (4) 0.0081 (4) 0.0175 (4)
C12 0.0351 (18) 0.0308 (16) 0.035 (2) −0.0025 (14) 0.0062 (15) 0.0041 (14)
N13 0.0284 (14) 0.0299 (13) 0.0348 (16) 0.0007 (11) 0.0064 (12) 0.0043 (12)
C14 0.0329 (17) 0.0277 (16) 0.0289 (18) 0.0020 (13) 0.0060 (14) −0.0040 (13)
C15 0.0385 (19) 0.0346 (18) 0.045 (2) 0.0035 (14) 0.0029 (16) 0.0112 (16)
N16 0.0283 (16) 0.0447 (18) 0.074 (2) −0.0057 (13) 0.0045 (16) 0.0265 (17)

Geometric parameters (Å, º)

Fe1—C6 2.027 (3) C6—C10 1.408 (4)
Fe1—C7 2.030 (3) C6—C7 1.408 (4)
Fe1—C8 2.033 (3) C6—H6 0.9800
Fe1—C5 2.034 (3) C7—C8 1.419 (4)
Fe1—C2 2.040 (3) C7—H7 0.9800
Fe1—C4 2.043 (3) C8—C9 1.408 (4)
Fe1—C1 2.043 (3) C8—H8 0.9800
Fe1—C10 2.043 (3) C9—C10 1.409 (4)
Fe1—C3 2.045 (3) C9—H9 0.9800
Fe1—C9 2.047 (3) C10—H10 0.9800
C1—C2 1.417 (4) S11—C15 1.721 (3)
C1—C5 1.432 (4) S11—C12 1.730 (3)
C1—C14 1.462 (4) C12—N13 1.306 (4)
C2—C3 1.417 (4) C12—N16 1.349 (4)
C2—H2 0.9800 N13—C14 1.394 (3)
C3—C4 1.414 (4) C14—C15 1.340 (4)
C3—H3 0.9800 C15—H15 0.9300
C5—C4 1.416 (4) N16—H16A 0.84 (2)
C5—H5 0.9800 N16—H16B 0.84 (2)
C4—H4 0.9800
C6—Fe1—C7 40.61 (12) C4—C3—H3 126.0
C6—Fe1—C8 68.33 (13) C2—C3—H3 126.0
C7—Fe1—C8 40.88 (12) Fe1—C3—H3 126.0
C6—Fe1—C5 112.99 (13) C4—C5—C1 108.4 (3)
C7—Fe1—C5 143.86 (14) C4—C5—Fe1 70.02 (17)
C8—Fe1—C5 173.68 (13) C1—C5—Fe1 69.79 (16)
C6—Fe1—C2 131.49 (13) C4—C5—H5 125.8
C7—Fe1—C2 108.54 (13) C1—C5—H5 125.8
C8—Fe1—C2 115.77 (13) Fe1—C5—H5 125.8
C5—Fe1—C2 68.37 (13) C3—C4—C5 107.9 (3)
C6—Fe1—C4 145.32 (14) C3—C4—Fe1 69.85 (17)
C7—Fe1—C4 173.96 (14) C5—C4—Fe1 69.34 (17)
C8—Fe1—C4 135.13 (14) C3—C4—H4 126.0
C5—Fe1—C4 40.64 (12) C5—C4—H4 126.0
C2—Fe1—C4 68.26 (12) Fe1—C4—H4 126.0
C6—Fe1—C1 106.63 (13) C10—C6—C7 108.3 (3)
C7—Fe1—C1 112.38 (13) C10—C6—Fe1 70.40 (18)
C8—Fe1—C1 145.08 (13) C7—C6—Fe1 69.82 (18)
C5—Fe1—C1 41.12 (11) C10—C6—H6 125.9
C2—Fe1—C1 40.62 (12) C7—C6—H6 125.9
C4—Fe1—C1 68.84 (12) Fe1—C6—H6 125.9
C6—Fe1—C10 40.46 (12) C6—C7—C8 107.5 (3)
C7—Fe1—C10 68.14 (13) C6—C7—Fe1 69.56 (17)
C8—Fe1—C10 67.91 (13) C8—C7—Fe1 69.66 (18)
C5—Fe1—C10 108.79 (13) C6—C7—H7 126.2
C2—Fe1—C10 170.67 (13) C8—C7—H7 126.2
C4—Fe1—C10 115.84 (13) Fe1—C7—H7 126.2
C1—Fe1—C10 131.53 (13) C9—C8—C7 108.1 (3)
C6—Fe1—C3 171.70 (13) C9—C8—Fe1 70.36 (18)
C7—Fe1—C3 133.85 (14) C7—C8—Fe1 69.46 (18)
C8—Fe1—C3 111.39 (13) C9—C8—H8 125.9
C5—Fe1—C3 68.26 (13) C7—C8—H8 125.9
C2—Fe1—C3 40.58 (12) Fe1—C8—H8 125.9
C4—Fe1—C3 40.48 (13) C8—C9—C10 107.9 (3)
C1—Fe1—C3 68.58 (13) C8—C9—Fe1 69.26 (18)
C10—Fe1—C3 147.70 (13) C10—C9—Fe1 69.70 (18)
C6—Fe1—C9 68.10 (13) C8—C9—H9 126.1
C7—Fe1—C9 68.31 (13) C10—C9—H9 126.1
C8—Fe1—C9 40.38 (12) Fe1—C9—H9 126.1
C5—Fe1—C9 133.72 (13) C6—C10—C9 108.2 (3)
C2—Fe1—C9 147.76 (14) C6—C10—Fe1 69.14 (18)
C4—Fe1—C9 111.42 (13) C9—C10—Fe1 70.01 (18)
C1—Fe1—C9 171.57 (13) C6—C10—H10 125.9
C10—Fe1—C9 40.29 (13) C9—C10—H10 125.9
C3—Fe1—C9 117.46 (14) Fe1—C10—H10 125.9
C2—C1—C5 106.9 (3) C15—S11—C12 88.62 (15)
C2—C1—C14 126.6 (3) N13—C12—N16 123.7 (3)
C5—C1—C14 126.4 (3) N13—C12—S11 115.2 (2)
C2—C1—Fe1 69.56 (17) N16—C12—S11 121.1 (2)
C5—C1—Fe1 69.09 (16) C12—N13—C14 110.0 (3)
C14—C1—Fe1 125.0 (2) C15—C14—N13 115.2 (3)
C3—C2—C1 108.7 (3) C15—C14—C1 125.8 (3)
C3—C2—Fe1 69.93 (17) N13—C14—C1 119.0 (3)
C1—C2—Fe1 69.82 (17) C14—C15—S11 111.0 (2)
C3—C2—H2 125.6 C14—C15—H15 124.5
C1—C2—H2 125.6 S11—C15—H15 124.5
Fe1—C2—H2 125.6 C12—N16—H16A 118 (2)
C4—C3—C2 108.0 (3) C12—N16—H16B 118 (2)
C4—C3—Fe1 69.67 (18) H16A—N16—H16B 123 (3)
C2—C3—Fe1 69.49 (17)
C5—C1—C2—C3 0.0 (3) C7—C8—C9—C10 −0.2 (4)
C14—C1—C2—C3 −178.4 (3) Fe1—C8—C9—C10 59.2 (2)
Fe1—C1—C2—C3 −59.3 (2) C7—C8—C9—Fe1 −59.4 (2)
C5—C1—C2—Fe1 59.2 (2) C7—C6—C10—C9 0.5 (3)
C14—C1—C2—Fe1 −119.1 (3) Fe1—C6—C10—C9 −59.3 (2)
C1—C2—C3—C4 0.0 (3) C7—C6—C10—Fe1 59.8 (2)
Fe1—C2—C3—C4 −59.2 (2) C8—C9—C10—C6 −0.2 (4)
C1—C2—C3—Fe1 59.2 (2) Fe1—C9—C10—C6 58.8 (2)
C2—C1—C5—C4 0.0 (3) C8—C9—C10—Fe1 −58.9 (2)
C14—C1—C5—C4 178.4 (3) C15—S11—C12—N13 1.1 (3)
Fe1—C1—C5—C4 59.6 (2) C15—S11—C12—N16 −179.0 (3)
C2—C1—C5—Fe1 −59.5 (2) N16—C12—N13—C14 179.7 (3)
C14—C1—C5—Fe1 118.8 (3) S11—C12—N13—C14 −0.4 (3)
C2—C3—C4—C5 0.0 (3) C12—N13—C14—C15 −0.9 (4)
Fe1—C3—C4—C5 −59.1 (2) C12—N13—C14—C1 −179.3 (3)
C2—C3—C4—Fe1 59.1 (2) C2—C1—C14—C15 −165.0 (3)
C1—C5—C4—C3 0.0 (3) C5—C1—C14—C15 17.0 (5)
Fe1—C5—C4—C3 59.4 (2) Fe1—C1—C14—C15 105.6 (3)
C1—C5—C4—Fe1 −59.4 (2) C2—C1—C14—N13 13.2 (4)
C10—C6—C7—C8 −0.6 (3) C5—C1—C14—N13 −164.9 (3)
Fe1—C6—C7—C8 59.6 (2) Fe1—C1—C14—N13 −76.2 (3)
C10—C6—C7—Fe1 −60.1 (2) N13—C14—C15—S11 1.7 (4)
C6—C7—C8—C9 0.5 (4) C1—C14—C15—S11 180.0 (2)
Fe1—C7—C8—C9 60.0 (2) C12—S11—C15—C14 −1.6 (3)
C6—C7—C8—Fe1 −59.5 (2)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C5 Cp ring.

D—H···A D—H H···A D···A D—H···A
N16—H16A···N13i 0.84 (2) 2.14 (2) 2.976 (4) 173 (4)
C10—H10···Cg1ii 0.98 2.89 3.703 (3) 141

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+3/2, z−1/2.

Funding Statement

We thank the DGAPA (project IN209020) for financial support.

References

  1. Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chopra, R., de Kock, C., Smith, P., Chibale, K. & Singh, K. (2015). Eur. J. Med. Chem. 100, 1–9. [DOI] [PubMed]
  3. Das, D., Sikdar, P. & Bairagi, M. (2016). Eur. J. Med. Chem. 109, 89–98. [DOI] [PubMed]
  4. Dondoni, A. (2010). Org. Biomol. Chem. 8, 3366–3385. [DOI] [PubMed]
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Ji Ram, V., Sethi, A., Nath, M. & Pratap, R. (2019). The Chemistry of Heterocycles, Vol. 5. pp. 149–478. Amsterdam: Elsevier.
  7. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  8. Mishra, R., Sharma, P. K., Verma, P. K., Tomer, I., Mathur, G. & Dhakad, P. K. (2017). J. Heterocycl. Chem. 54, 2103–2116.
  9. Plażuk, D., Zakrzewski, J., Rybarczyk-Pirek, A. & Domagała, S. (2005). J. Organomet. Chem. 690, 4302–4308.
  10. Sánchez-Rodríguez, E. P., Hochberger-Roa, F., Corona-Sánchez, R., Barquera-Lozada, J. E., Toscano, R. A., Urrutigoïty, M., Gouygou, M., Ortega-Alfaro, M. C. & López-Cortés, J. G. (2017). Dalton Trans. 46, 1510–1519. [DOI] [PubMed]
  11. Shao, L., Hu, Y., Zhou, X., Zhang, Q. & Fang, J.-X. (2005). Acta Cryst. E61, m1269–m1271.
  12. Shao, L., Zhou, X., Hu, Y. & Fang, J.-X. (2006b). Acta Cryst. E62, m49–m51.
  13. Shao, L., Zhou, X., Hu, Y., Jin, Z., Liu, J. & Fang, J. X. (2006a). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 36, 325–330.
  14. Sheldrick, G. M. (2013). CIFTAB. University of Göttingen, Germany.
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  17. Siemens (1998). XP in SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  18. Xu, X., Zheng, B., Deng, H., Zhang, X. & Shuai, Q. (2020). Microchem. J. 158, 105257.
  19. Yu, H., Shao, L. & Fang, J. (2007). J. Organomet. Chem. 692, 991–996.
  20. Yu, H.-B., Shao, L., Jin, Z., Liu, J.-B. & Fang, J.-X. (2005). Acta Cryst. E61, m2031–m2032.
  21. Zeng, R.-S., Zou, J.-P., Zhi, S.-J., Chen, J. & Shen, Q. (2003). Org. Lett. 5, 1657–1659. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022007228/dj2046sup1.cif

e-78-00818-sup1.cif (536.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022007228/dj2046Isup3.hkl

e-78-00818-Isup3.hkl (256.8KB, hkl)

CCDC reference: 1841501

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES