Skip to main content
Journal of Zhejiang University (Medical Sciences) logoLink to Journal of Zhejiang University (Medical Sciences)
. 2022 Jun;51(3):290–297. [Article in Chinese] doi: 10.3724/zdxbyxb-2022-0218

重庆市新生儿脂肪酸氧化代谢病筛查及确诊患儿随访分析

Screening for newborn fatty acid oxidation disorders in Chongqing and the follow-up of confirmed children

Min CHEN 1, Yifan YIN 1, Hao LIU 1, Yong PENG 1, Liang YE 1, Qian LUO 1, Jingkun MIAO 1
PMCID: PMC9511477  PMID: 36207828

Abstract

目的

:了解重庆市脂肪酸氧化代谢病(FAOD)的发病率、临床特征、基因突变特点及预后。

方法

:采集2020年7月至2022年2月重庆医科大学附属妇女儿童医院新生儿疾病筛查中心招募的35 374名新生儿的血液标本,采用串联质谱法检测干血斑中酰基肉碱谱,初筛阳性的患儿于2周内召回,进一步通过尿有机酸、血生化及基因检测等方法确诊,并对确诊患儿进行治疗和随访。

结果

:35 374名新生儿初筛阳性267例,初筛阳性率为0.75%,基因确诊5例(FAOD发病率为1/7075),其中原发性肉碱缺乏症(PCD)3例(发病率为1/11 791),短链酰基辅酶A脱氢酶缺乏症(SCADD)和极长链酰基辅酶A脱氢酶缺乏症(VLCADD)各1例(发病率均为1/35 374)。3例PCD患儿 SLC22A5基因突变以c.1400C>G和c.338G>A常见,c.621G>T为新突变,其中2例患儿予口服补充左卡尼汀,随访期间无临床表现;1例患儿拒绝治疗,于6月龄急性发作,补充左卡尼汀后症状好转,现生长发育正常。1例SCADD患儿检出 ACADS基因复合杂合突变(c.417G>C和c.1054G>A),无临床表现。1例VLCADD患儿检出 ACADVL基因复合杂合突变(c.1349G>A和c.1843C>T),新生儿期急性发作,治疗好转后予富含中链脂肪酸的奶粉喂养至今,随访期间发育正常。

结论

:重庆市FAOD发病率较高,其中PCD比例最高,VLCADD患儿临床表型严重。通过新生儿筛查,早诊断、早治疗有助于改善患儿预后。


脂肪酸氧化代谢病(fatty acid oxidation disorders,FAOD);游离肉碱(free carnitine,C0);丁酰基肉碱(butyrylcarnitine,C4);丙酰基肉碱(propionylcarnitine,C3);肉豆蔻烯酰肉碱(tetradecenoylcarnitine,C14:1);肉豆蔻酰肉碱(myristoylcarnitine,C14);肉豆蔻二烯酰基肉碱(tetradecadienoylcarnitine,C14:2);乙酰基肉碱(acetylcarnitine,C2);棕榈酰肉碱(palmitoylcarnitine,C16);原发性肉碱缺乏症(primary carnitine deficiency,PCD);短链酰基辅酶A脱氢酶缺乏症(short-chain acyl-CoA dehydrogenase deficiency,SCADD);极长链酰基辅酶A脱氢酶缺乏症(very long-chain acyl-CoA dehydrogenase deficiency,VLCADD);

线粒体脂肪酸β氧化是细胞能量产生最重要的过程之一。对于一些能量需求高的器官,脂肪酸氧化是其在长时间禁食、发热、寒冷、肌肉疲劳期间的主要供能方式 [1] 。脂肪酸进入线粒体进行β氧化代谢途径需要25种酶和转运蛋白参与,当其中任何一种酶或转运蛋白出现功能缺陷时,就会引发FAOD [2] 。FAOD属于常染色体隐性遗传病,发病时严重程度不一、发病年龄不定、临床表现多样,常累及心肌、骨骼肌、肝脏,可表现为心室肥厚、心功能不全、肌无力、肝大、低血糖、代谢性酸中毒等 [ 3- 4] 。FAOD临床表现无特异性,仅靠临床表现及常规实验室检查容易误诊及漏诊,主要通过串联质谱法检测血游离肉碱及酰基肉碱水平,并进一步行基因检测确诊 [5] 。FAOD患儿的预后与疾病类型、诊断时间、治疗依从性等相关,早期诊断、早期治疗可明显改善患儿预后 [6]

随着串联质谱法在新生儿疾病筛查中的广泛应用,早期识别 FAOD 成为可能,减少了包括死亡在内严重不良事件的发生 [ 7- 8] 。本文回顾性分析了2020年7月至2022年2月重庆医科大学附属妇女儿童医院新生儿疾病筛查中心新生儿遗传代谢病串联质谱法筛查的资料,了解重庆市新生儿FAOD的发病率、临床特征、基因突变特点及预后,为FAOD患儿出生缺陷的防控提供参考。

2020年7月1日至2022年2月28日重庆医科大学附属妇女儿童医院新生儿疾病筛查中心共招募35 374名新生儿进行血串联质谱法检测。按照《新生儿疾病筛查技术规范(2010年版)》 [9] 中新生儿遗传代谢病筛查干血斑采集技术规范要求,健康新生儿在出生3~7 d充分哺乳后采血;早产儿、低出生体重儿及正在治疗的新生儿采血时间不超过出生后20 d。本研究通过重庆医科大学附属妇女儿童医院伦理委员会审查[(2020)伦审(科)024号],筛查前监护人均签署知情同意书。

XevoTQ-S串联质谱仪为美国Waters公司产品,GCMS-QP2020 NX气相色谱-质谱联用仪为日本岛津公司产品;Illumina HiSeq 2500测序平台为美国Illumina公司产品。采血滤纸为贵州里定生物科技有限责任公司产品;Neobase新生儿非衍生法筛查试剂盒为芬兰PerkinElmer公司产品;DNA提取试剂盒为德国Qiangen公司产品;聚合酶联反应试剂盒为日本 TaKaRa 公司产品。

采集新生儿足跟血制成干血斑,采用串联质谱仪和串联质谱非衍生法筛查试剂盒测定干血斑酰基肉碱谱,检测指标包括C0、C4、C4/C3、C14:1、C14、C14:2、C14:1/C2、C14:1/C16等。

取新鲜尿液,予尿素酶、盐酸羟铵、氢氧化钠和盐酸处理,加入内标十七烷酸,乙酸乙酯萃取2次,经甲基硅烷化衍生后采用气相色谱-质谱法检测。

采用高通量测序进行基因检测,检测结果与PubMed数据库、人类基因突变数据库、千人基因组(1000 Genomes)数据库及ClinVar数据库等进行比对,根据美国医学遗传学与基因组学学会联合分子病理协会提出的“序列变异解读标准和指南” [10] 对突变位点进行致病性分析。采用PROVEAN( http://provean.jcvi.org/)、SIFT( http://sift.jcvi.org/)、PolyPhen-2( http://genetics.bwh.harvard.edu/pph2/)等工具进行新突变的功能预测。明确基因突变患儿的父母进一步行Sanger测序验证,并确定变异来源。以上检测均由北京迈基诺基因科技股份有限公司完成。

串联质谱法检测指标高于或低于截断值为初筛阳性 [ 11- 12] 。PCD初筛:C0降低(正常参考值9~60 μmol/L),可伴多种酰基肉碱降低。SCADD初筛:C4升高(正常参考值0.05~0.45 μmol/L),可伴C4/C3升高(正常参考值0.04~0.35)。VLCADD初筛:C14:1升高(正常参考值0.02~0.25 μmol/L),可伴C14(正常参考值0.03~0.35 μmol/L)、C14:2(正常参考值0.00~0.04 μmol/L)、C14:1/C2(正常参考值0.00~0.02)、C14:1/C16(正常参考值0.00~0.10)升高。初筛阳性患儿于2周内召回,复查游离肉碱和酰基肉碱水平,并行尿有机酸、血氨、乳酸、肌酸激酶及血生化等检测和相关致病基因突变分析。对于C0降低的新生儿,同时召回母亲检查以排除母源性疾病。

PCD诊断标准:串联质谱法初筛及召回后检测提示C0降低并排除母源性肉碱缺乏,尿乙基丙二酸升高或正常, SLC22A5基因复合杂合或纯合突变 [13] 。SCADD诊断标准:串联质谱法初筛及召回后检测提示C4升高,尿二羧酸升高或正常, ACADS基因复合杂合或纯合突变。VLCADD诊断标准:串联质谱法初筛及召回后检测提示C14:1升高,尿二羧酸升高或正常, ACADVL基因复合杂合或纯合突变。

对所有确诊患儿进行饮食指导:频繁喂养、避免饥饿、添加辅食后限制脂肪摄入量。PCD患儿须终身补充左卡尼汀(100~300 mg·kg –1·d –1 [14] ,一般每天分3次给药,具体剂量依据病情及治疗效果进行调整,添加辅食后鼓励摄入精瘦肉。SCADD患儿随访采用串联质谱法检测血酰基肉碱谱,游离肉碱降低时口服左卡尼汀。VLCADD患儿长期接受低脂高碳水化合物饮食,并给予补充中链甘油三酯、左卡尼汀、辅酶Q10等治疗。所有患儿在急性代谢失代偿期(喂养困难、高氨血症、代谢性酸中毒、低血糖、肝功能异常、心肌损害等)予纠正低血糖及酸中毒、维持足够热量及水、电解质平衡等对症处理。

病情稳定患儿2~3个月随访1次,监测项目包括体格检查,血酰基肉碱谱(串联质谱法)、尿有机酸、肝功能、心肌酶谱、血糖、血氨、乳酸检测,腹部及心脏彩色多普勒超声检查等,同时评估患儿体格及智力发育状况。随访时间截至2022年2月28日。

筛查新生儿共35 374名,初筛阳性267例,初筛阳性率为0.75%;召回250例,召回率为93.63%;复查阳性29例,基因确诊5例,共3种FAOD,总发病率为1/7075,阳性预测值为2%。其中PCD 3例,发病率为1/11 791;SCADD 1例,发病率为1/35 374;VLCADD 1例,发病率为1/35 374。

3例PCD患儿初筛C0浓度分别为4.30、8.50、6.65 μmol/L,均低于参考值范围,尿有机酸检测未见明显异常。1例SCADD患儿初筛C4浓度为0.95 μmol/L,C4/C3正常(0.31),尿乙基丙二酸升高。1例VLCADD患儿初筛C14:1浓度为4.86 μmol/L,C14为5.95 μmol/L,C14:2为0.14 μmol/L,C14:1/C2为0.36,C14:1/C16为0.23,尿多种二羧酸升高。

PCD患儿和SCADD患儿确诊时均无临床症状,生化及影像学检查均未见明显异常;VLCADD患儿确诊时出现低血糖(2.10 mmol/L)、肝功能异常(丙氨酸转氨酶149.20 U/L,天冬氨酸转氨酶328.30 U/L)、肌酸激酶升高(1161.30 U/L),肌酸激酶同工酶升高(64.50 U/L),影像学检查未见明显异常,予纠正低血糖、酸中毒、保护脏器等对症处理后好转。

3例PCD患儿检出 SLC22A5基因纯合突变1例,复合杂合突变2例,共4个突变位点:c.1400C>G、c.338G>A、c.51C>G和c.621G>T,以c.1400C>G、c.338G>A最常见(均为2/6)。前三种为已知突变,c.621G>T为新发突变。c.621G>T PubMed数据库、人类基因突变数据库及千人基因组数据库及ClinVar数据库中均未见,经PROVEAN行蛋白质功能预测,结果为有害;经SIFT和PolyPhen-2行蛋白质功能预测,该位点氨基酸残基保守性不高,致病倾向低。SCADD患儿检出 ACADS基因复合杂合突变,c.417G>C为可能致病突变位点,c.1054G>A为临床意义未明突变位点,均为错义突变。VLCADD患儿检出 ACADVL基因复合杂合突变,c.1349G>A、c.1843C>T均为致病突变位点,c.1349G>A为错义突变,c.1843C>T为无义突变。见 表1

表 1 五例脂肪酸氧化代谢病患儿的基因突变检测结果

Table 1 Gene diagnosis of the 5 children with fatty acid oxidation disorders

例序

确诊病种

突变基因

突变一

突变二

遗传方式

外显子

碱基改变

氨基酸改变

基因型

来源

致病风险

外显子

碱基改变

氨基酸改变

基因型

来源

致病风险

1

PCD

SLC22A5

1

c.338G>A

p.Cys113Tyr

纯合

母源

P

1

c.338G>A

p.Cys113Tyr

纯合

父源

P

AR

2

PCD

SLC22A5

8

c.1400C>G

p.Ser467Cys

杂合

母源

P

1

c.51C>G

p.Phe17Leu

杂合

父源

P

AR

3

PCD

SLC22A5

8

c.1400C>G

p.Ser467Cys

杂合

母源

P

3

c.621G>T

p.Gln207His

杂合

父源

VUS

AR

4

SCADD

ACADS

4

c.417G>C

p.Trp139Cys

杂合

母源

LP

9

c.1054G>A

p.Ala352Thr

杂合

父源

VUS

AR

5

VLCADD

ACADVL

14

c.1349G>A

p.Arg450His

杂合

母源

P

20

c.1843C>T

p.Arg615*

杂合

父源

P

AR

PCD:原发性肉碱缺乏症;SCADD:短链酰基辅酶A脱氢酶缺乏症;VLCADD:极长链酰基辅酶A脱氢酶缺乏症;P:致病;LP:可能致病;VUS:临床意义未明;AR:常染色体隐性遗传.

3例PCD患儿(例1~3)随访时间分别为13、4、10个月,其中2例确诊后长期口服左卡尼汀,血C0浓度维持在22.41~102.62 μmol/L,随访过程中体格及智力发育正常,无异常表现;1例拒绝左卡尼汀治疗,于6月龄时出现下肢浮肿、高氨血症(151.60 μmol/L)、肝功能异常(丙氨酸转氨酶229.90 U/L、天冬氨酸转氨酶 448.40 U/L)、心肌损伤(肌酸激酶同工酶10.2 U/L)、肝大、心包积液表现,予对症处理,补充左卡尼汀,随访期间C0维持在9.49~24.61 μmol/L,4个月后血生化基本恢复正常,现体格及智力发育正常。1例SCADD患儿随访2个月,随访期间C4浓度为1.21~2.83 μmol/L,C4/C3为1.11~1.75,未出现SCADD相关临床症状,生长发育正常。1例VLCADD患儿在新生儿急性期缓解后未再发作,随访时间为19个月,随访C14:1浓度为0.78~3.50 μmol/L,肝功能、心肌酶谱逐渐好转,10月龄时基本恢复正常,随访期间体格和智力发育正常。

不同国家及地区FAOD发病率差异较大。Shibata等 [15] 对亚洲多个地区新生儿筛查数据进行统计发现,FAOD发病率日本为1/30 000,韩国为1/111 000,中国台湾地区为1/34 000;Schulze等 [12] 通过对250 000名新生儿进行筛查发现,德国FAOD发病率为1/10 400;澳大利亚、德国和美国的FAOD总发病率为1/9300 [16] 。山东省济宁市的FAOD发病率为1/14 496 [17] ,浙江省为1/15 382 [18] ,天津市为1/8818,福建省泉州市为1/7440 [19] 。本文资料显示,重庆市FAOD发病率为1/7075,与泉州市FAOD发病率相近。

本研究共检出3种FAOD,其中PCD的发病率最高,约为1/11 791。有文献报道,美国加利福尼亚州PCD发病率约为1/65 204 [20] ,澳大利亚为1/100 000~1/37 000 [21] ,浙江省、天津市、福建省泉州市PCD发病率分别约为1/23 862、1/22 044、1/10 126 [ 18- 1922] 。本文资料显示,重庆市PCD的发病率与福建省泉州市相近。既往对PCD基因的研究发现,不同地域人群的高频突变位点是不同的,天津市及山东省济宁市报道的 SLC22A5最常见的突变位点为c.1400C>G,其次为c.51C>G [ 1719] ,意大利以c.505C>T最常见,西非地区为c.632A>G,日本则以c.1400C>G和c.396G>A常见 [23] 。本文资料中3例PCD患儿中共发现4个 SLC22A5基因突变位点,其中c.1400C>G为常见的突变位点之一,与天津市及山东省济宁市报道的结果基本一致。c.1400C>G为已知致病突变位点,定位于目标蛋白OCTN2的第11个跨膜结构域,主要影响肉碱与OCTN2结合,从而降低肉碱转运能力 [24] ,但影响程度轻微 [25] 。这也可能是本文资料中2例携带c.1400C>G突变的复合杂合突变患儿初筛结果较另外1例患儿C0值更高、补充左卡尼汀后维持较高C0浓度且预后较好的原因之一。c.621G>T为新突变位点,属错义突变,碱基突变使第207位的谷氨酰胺被组氨酸替代。该位点定位于目标蛋白OCTN2的第4个跨膜结构域,经PROVEAN进行蛋白质功能预测,结果为有害;经SIFT和PolyPhen-2进行蛋白质功能预测,该位点氨基酸残基保守性不高,致病倾向低,结合患儿有C0降低的表现,预测该位点突变可能导致蛋白质结构和功能的损害。PCD可于任何年龄发病,临床表现多样,是一种潜在的致死性疾病,早期诊断及治疗是改善患儿预后的关键 [26] 。长期随访研究表明,PCD患者通过定期服药可完全维持健康状态 [27] 。本文资料随访的3例患儿,其中2例长期口服左卡尼汀,无临床症状,体格及智力发育正常;另外1例拒绝补充左卡尼汀,于6月龄时出现下肢浮肿、肝病、心肌损害、心包积液等急性期表现,对症治疗及补充左卡尼汀后症状好转,后续每日补充左卡尼汀,随访期间未再出现临床症状,现生长发育正常。鉴于PCD的潜在猝死风险,应加强对监护人的宣教,提高监护人对该病的重视程度和随访的依从性。

SCADD的发病率同样因不同种族和地区存在较大差异。据报道,新西兰SCADD发病率约为1/33 000 [28] ,美国加利福尼亚州约为1/34 362 [29] ,日本约为1/100 000 [30] 。我国SCADD总发病率尚不清楚。本文资料显示,重庆市SCADD发病率约为1/35 374,较福建省泉州市(1/91 136) [31] 及浙江省(1/68 936) [18] 发病率高,接近天津市发病率(1/27 555) [19] 。SCADD的致病基因 ACADS位于染色体12q24.42,至今已报道90余种致病突变,以错义突变为主。本文资料中的1例SCADD患儿,基因检测发现c.417G>C为可能致病突变位点,c.1054G>A为临床意义未明突变位点,均为错义突变。Tonin等 [32] 报道 ACADS的突变位点c.1054G>A可能通过影响目标蛋白羧基末端结构域影响其酶活性。早期认为SCADD可能引起低血糖、肌无力、发育迟缓等表现,现随着新生儿代谢性疾病筛查的开展,发现SCADD患儿多数无症状 [33] ,因此被归为良性疾病。通过新生儿筛查确诊的大多数SCADD患儿在没有任何干预的情况下未出现临床表现,但也有研究指出该病患儿处于易感状态,需要多种基因和/或环境交互作用才可能出现临床表现 [29] ,故是否将SCADD纳入新生儿筛查计划仍有争议,需要更多SCADD患儿的长期随访数据分析。本文资料中的SCADD患儿无临床症状,需要对其预后进行长期观察。

VLCADD发病率较低,多国研究报道的发病率为1/620 421~1/88 927 [ 13- 17] ,但本文资料显示重庆市VLCADD发病率偏高,考虑与本文资料筛查人数有限、可能存在偏倚相关。VLCADD由位于染色体17p13.1的 ACADVL基因编码,目前已有200余种致病突变被报道,以错义突变为主。VLCADD患儿出现反复横纹肌溶解症、严重的心肌病等严重临床表现,可能与突变位点使蛋白功能完全失活有关 [ 34- 35] 。本文资料中的1例VLCADD患儿新生儿期出现低血糖、肝功能异常、肌酸激酶升高,基因检测发现c.1843C>T和c.1349G>A两个突变位点均为致病性突变,其中c.1843C>T为无义突变导致蛋白在第615位氨基酸转录时终止,对目标蛋白结构及功能影响较大,患儿可能发生昏迷等严重临床症状 [ 36- 37] ,这可能是该患儿出现严重临床表现的原因。VLCADD的临床表现具有异质性,根据起病年龄和临床特点的不同分为心肌病型、肝型和肌病型,其中心肌病型多于新生儿和婴儿早期发病,可表现为低血糖、心肌酶升高、肥厚型心肌病、心律失常等,起病凶险,病死率高 [38] 。本文资料中VLCADD患儿虽起病凶险,但由于确诊干预及时,未造成严重不良后果,因此新生儿筛查确诊并及早干预对降低VLCADD患儿的病死率意义重大。

综上,重庆市新生儿FAOD的发病率较高,以PCD最常见,VLCADD的临床表型相对严重。通过对患儿的早期筛查诊断、规范治疗和长期随访,可以改善患儿预后。

COMPETING INTERESTS

所有作者均声明不存在利益冲突

Funding Statement

重庆市妇幼保健院院级科研课题(2019YJMS08);重庆市留学人员回国创业创新支持计划(cx2019111);重庆市中青年医学高端人才项目;重庆市社会事业与民生保障科技创新专项(cstc2016shmszx130026)

References

  • 1.HOUTEN S M, WANDERS R J A. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation[J] J Inherit Metab Dis. . 2010;33(5):469–477. doi: 10.1007/s10545-010-9061-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.MOCZULSKI D, MAJAK I, MAMCZUR D. An overview of beta-oxidation disorders[J]. Postepy Hig Med Dosw (Online), 2009, 63: 266-277 . [PubMed]
  • 3.GASTON G, GANGOITI J A, WINN S, et al. Cardiac tissue citric acid cycle intermediates in exercised very long‐chainacyl‐CoA dehydrogenase‐deficient mice fed triheptanoin or medium‐chain triglyceride[J] Jrnl Inher Metab Disea. . 2020;43(6):1232–1242. doi: 10.1002/jimd.12284. [DOI] [PubMed] [Google Scholar]
  • 4.FU L, HUANG M, CHEN S. Primary carnitine deficiency and cardiomyopathy[J] Korean Circ J. . 2013;43(12):785. doi: 10.4070/kcj.2013.43.12.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.CHAMPION M P. An approach to the diagnosis of inherited metabolic disease[J] Arch Dis Childhood - Education Pract. . 2010;95(2):40–46. doi: 10.1136/adc.2008.151183. [DOI] [PubMed] [Google Scholar]
  • 6.SCHATZ U A, ENSENAUER R. The clinical manifestation of MCAD deficiency: challenges towards adulthood in the screened population[J] J Inherit Metab Dis. . 2010;33(5):513–520. doi: 10.1007/s10545-010-9115-5. [DOI] [PubMed] [Google Scholar]
  • 7.WILCKEN B, WILEY V, HAMMOND J, et al. Screening newborns for inborn errors of metabolism by tandem mass spectrometry[J] N Engl J Med. . 2003;348(23):2304–2312. doi: 10.1056/NEJMoa025225. [DOI] [PubMed] [Google Scholar]
  • 8.韩连书. 新生儿遗传病基因筛查技术及相关疾病[J]. 浙江大学学报(医学版), 2021, 50(4): 429-435 ; HAN Lianshu. Genetic screening techniques and diseases for neonatal genetic diseases[J] Journal of Zhejiang University (Medical Sciences) . 2021;50(4):429–435. (in Chinese). doi: 10.3724/zdxbyxb-2021-0288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.中华人民共和国卫生部.新生儿疾病筛查技术规范 (2010年版) [A/OL]. (2010-11-10) [2022-04-11]. http://www.nhc.gov.cn/cmsresources/mohfybjysqwss/cmsrsdocument/doc10798.doc ; Ministry of Health of the People’s Republic of China. Technical guide of newborn screening in China (2010) [A/OL]. (2010-11-10) [2022-04-11]. http://www.nhc.gov.cn/cmsresources/mohfybjysqwss/cmsrsdocument/doc10798. doc. (in Chinese)
  • 10.RICHARDS S, AZIZ N, BALE S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J] Genet Med. . 2015;17(5):405–424. doi: 10.1038/gim.2015.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.GARG U, DASOUKI M. Expanded newborn screening of inherited metabolic disorders by tandem mass spectrometry: clinical and laboratory aspects[J] Clin Biochem. . 2006;39(4):315–332. doi: 10.1016/j.clinbiochem.2005.12.009. [DOI] [PubMed] [Google Scholar]
  • 12.SCHULZE A, LINDNER M, KOHLMÜLLER D, et al. Expanded newborn screening for inborn errors of metabolism by electrospray ionization-tandem mass spectrometry: results, outcome, and implications[J] Pediatrics. . 2003;111(6):1399–1406. doi: 10.1542/peds.111.6.1399. [DOI] [PubMed] [Google Scholar]
  • 13.中华预防医学会出生缺陷预防与控制专业委员会新生儿遗传代谢病筛查学组, 中华医学会儿科分会出生缺陷预防与控制专业委员会, 中国医师协会医学遗传医师分会临床生化遗传专业委员会,等. 原发性肉碱缺乏症筛查与诊治共识[J]. 中华医学杂志, 2019, 99(2): 88-92 ; The Subspecialty Group of Newborn Screening, Society of Birth Defects Prevention and Control, Chinese Preventive Medicine Association; The Subspecialty Committee of Birth Defects Prevention and Control, the Society of Chinese Pediatric, Chinese Medical Association; the Subspecialty Committee of Clinical Biochemistry and Genetics, the Society of Medical Genetics, Chinese Medical Doctor Association, et al. Consensus on the screening, diagnosis and treatment of primary carnitine deficiency[J]. National Medical Journal of China, 2019, 99(2): 88-92. (in Chinese)
  • 14.韩连书, 叶军, 邱文娟, 等. 原发性肉碱缺乏症17例诊治与随访[J]. 中华儿科杂志, 2012, 50(6): 405-409 . [PubMed]; HAN Lianshu, YE Jun, QIU Wenjuan, et al. Primary carnitine deficiency in 17 patients: diagnosis, treatment and follow up[J]. Chinese Journal of Pediatrics, 2012, 50(6): 405-409. (in Chinese) . [PubMed]
  • 15.SHIBATA N, HASEGAWA Y, YAMADA K, et al. Diversity in the incidence and spectrum of organic acidemias, fatty acid oxidation disorders, and amino acid disorders in Asian countries: selective screening vs. expanded newborn screening[J] Mol Genet Metab Rep. . 2018;16:5–10. doi: 10.1016/j.ymgmr.2018.05.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.LINDNER M, HOFFMANN G F, MATERN D. Newborn screening for disorders of fatty-acid oxidation: experience and recommendations from an expert meeting[J] J Inherit Metab Dis. . 2010;33(5):521–526. doi: 10.1007/s10545-010-9076-8. [DOI] [PubMed] [Google Scholar]
  • 17.杨池菊, 史彩虹, 周成, 等. 山东省济宁地区新生儿脂肪酸氧化代谢病筛查及随访分析[J]. 浙江大学学报(医学版), 2021, 50(4): 472-480 . [DOI] [PMC free article] [PubMed]; YANG Chiju, SHI Caihong, ZHOU Cheng, et al. Screening and follow-up results of fatty acid oxidative metabolism disorders in 608 818 newborns in Jining, Shandong province[J]. Journal of Zhejiang University (Medical Sciences) , 2021, 50(4): 472-480. (in Chinese) . [DOI] [PMC free article] [PubMed]
  • 18.郑静, 张玉, 洪芳, 等. 浙江省新生儿脂肪酸氧化代谢疾病筛查及随访分析[J]. 浙江大学学报(医学版), 2017, 46(3): 248-255 . [DOI] [PMC free article] [PubMed]; ZHENG Jing, ZHANG Yu, HONG Fang, et al. Screening for fatty acid oxidation disorders of newborns in Zhejiang province: prevalence, outcome and follow-up[J]. Journal of Zhejiang University (Medical Sciences), 2017, 46(3): 248-255. (in Chinese) . [DOI] [PMC free article] [PubMed]
  • 19.WANG S, LENG J, DIAO C, et al. Genetic characteristics and follow-up of patients with fatty acid β-oxidation disorders through expanded newborn screening in a northern Chinese population[J] J Pediatr Endocrinol Metab. . 2020;33(6):683–690. doi: 10.1515/jpem-2019-0551. [DOI] [PubMed] [Google Scholar]
  • 20.FEUCHTBAUM L, CARTER J, DOWRAY S, et al. Birth prevalence of disorders detectable through newborn screening by race/ethnicity[J] Genet Med. . 2012;14(11):937–945. doi: 10.1038/gim.2012.76. [DOI] [PubMed] [Google Scholar]
  • 21.WILCKEN B, WILEY V, SIM K G, et al. Carnitine transporter defect diagnosed by newborn screening with electrospray tandem mass spectrometry[J] J Pediatr. . 2001;138(4):581–584. doi: 10.1067/mpd.2001.111813. [DOI] [PubMed] [Google Scholar]
  • 22.LIN W, WANG K, ZHENG Z, et al. Newborn screening for primary carnitine deficiency in Quanzhou, China[J] Clinica Chim Acta. . 2021;512:166–171. doi: 10.1016/j.cca.2020.11.005. [DOI] [PubMed] [Google Scholar]
  • 23.TANG N L S, HWU W L, CHAN R T, et al. A founder mutation (R254X) of SLC22A5 (OCTN2) in Chinese primary carnitine deficiency patients[J] Hum Mutat. . 2002;20(3):232. doi: 10.1002/humu.9053. [DOI] [PubMed] [Google Scholar]
  • 24.OHASHI R, TAMAI I, INANO A, et al. Studies on functional sites of organic cation/carnitine transporter OCTN2 (SLC22A5) using a Ser467Cys mutant protein[J] J Pharmacol Exp Ther. . 2002;302(3):1286–1294. doi: 10.1124/jpet.102.036004. [DOI] [PubMed] [Google Scholar]
  • 25.CHEN Y C, CHIEN Y H, CHEN P W, et al. Carnitine uptake defect (primary carnitine deficiency): risk in genotype-phenotype correlation[J] Hum Mutat. . 2013;34(4):655. doi: 10.1002/humu.22286. [DOI] [PubMed] [Google Scholar]
  • 26.WANG S, RAO J, LI Y, et al. Primary carnitine deficiency cardiomyopathy[J] Int J Cardiol. . 2014;174(1):171–173. doi: 10.1016/j.ijcard.2014.03.190. [DOI] [PubMed] [Google Scholar]
  • 27.CANO A, OVAERT C, VIANEY-SABAN C, et al. Carnitine membrane transporter deficiency: a rare treatable cause of cardiomyopathy and anemia[J] Pediatr Cardiol. . 2008;29(1):163–165. doi: 10.1007/s00246-007-9051-9. [DOI] [PubMed] [Google Scholar]
  • 28.ZYTKOVICZ T H, FITZGERALD E F, MARSDEN D, et al. Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots[J] Clin Chem. . 2001;47(11):1945–1955. doi: 10.1093/clinchem/47.11.1945. [DOI] [PubMed] [Google Scholar]
  • 29.GALLANT N M, LEYDIKER K, TANG H, et al. Biochemical, molecular, and clinical characteristics of children with short chain acyl-CoA dehydrogenase deficiency detected by newborn screening in California[J] Mol Genet Metab. . 2012;106(1):55–61. doi: 10.1016/j.ymgme.2012.02.007. [DOI] [PubMed] [Google Scholar]
  • 30.SHIRAO K, OKADA S, TAJIMA G, et al. Molecular pathogenesis of a novel mutation, G108D, in short-chain acyl-CoA dehydrogenase identified in subjects with short-chain acyl-CoA dehydrogenase deficiency[J] Hum Genet. . 2010;127(6):619–628. doi: 10.1007/s00439-010-0822-7. [DOI] [PubMed] [Google Scholar]
  • 31.LIN Y, ZHANG W, CHEN D, et al. Newborn screening and genetic characteristics of patients with short- and very long-chain acyl-CoA dehydrogenase deficiencies[J] Clinica Chim Acta. . 2020;510:285–290. doi: 10.1016/j.cca.2020.07.038. [DOI] [PubMed] [Google Scholar]
  • 32.TONIN R, CACIOTTI A, FUNGHINI S, et al. Clinical relevance of short-chain acyl-CoA dehydrogenase (SCAD) deficiency: exploring the role of new variants including the first SCAD-disease-causing allele carrying a synonymous mutation[J] BBA Clin. . 2016;5:114–119. doi: 10.1016/j.bbacli.2016.03.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.PENA L, ANGLE B, BURTON B, et al. Follow-up of patients with short-chain acyl-CoA dehydrogenase and isobutyryl-CoA dehydrogenase deficiencies identified through newborn screening: one center’s experience[J] Genet Med. . 2012;14(3):342–347. doi: 10.1038/gim.2011.9. [DOI] [PubMed] [Google Scholar]
  • 34.PENA L D M, VAN CALCAR S C, HANSEN J, et al. Outcomes and genotype-phenotype correlations in 52 individuals with VLCAD deficiency diagnosed by NBS and enrolled in the IBEM-IS database[J] Mol Genet Metab. . 2016;118(4):272–281. doi: 10.1016/j.ymgme.2016.05.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.MERRITT 2ND J L, MACLEOD E, JURECKA A, et al. Clinical manifestations and management of fatty acid oxidation disorders[J] Rev Endocr Metab Disord. . 2020;21(4):479–493. doi: 10.1007/s11154-020-09568-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.SMON A, REPIC LAMPRET B, GROSELJ U, et al. Next generation sequencing as a follow-up test in an expanded newborn screening programme[J] Clin Biochem. . 2018;52:48–55. doi: 10.1016/j.clinbiochem.2017.10.016. [DOI] [PubMed] [Google Scholar]
  • 37.BU Q, PAN Z, SAINI S S, et al. Correspondence[J] Ind Pediatr. . 2016;53(3):262–264. doi: 10.1007/s13312-016-0833-0. [DOI] [PubMed] [Google Scholar]
  • 38.REMEC Z I, GROSELJ U, DROLE TORKAR A, et al. Very long-chain acyl-CoA dehydrogenase deficiency: high incidence of detected patients with expanded newborn screening program[J] Front Genet. . 2021;12:648493. doi: 10.3389/fgene.2021.648493. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Zhejiang University (Medical Sciences) are provided here courtesy of Zhejiang University Press

RESOURCES