Abstract
1. The membrane capacitance of mast cells was monitored under voltage clamp, using sinusoidal excitation and a lock-in amplifier. 2. Degranulation was accompanied by stepwise capacitance increases that presumably represent the fusion of single secretory granules with the cell membrane. Besides capacitance steps, we also observed gradual changes in capacitance that occurred even in the absence of degranulation, were independent of the presence of nucleotides in the pipette, and were steeply dependent on cytoplasmic [Ca2+]. 3. Cytoplasmic Ca2+ at concentrations of 0.3-3 microM stimulated a decline in capacitance, with a dose-response curve suggesting control by the binding of Ca2+ to high-affinity intracellular sites. When maximally activated, this mechanism could lead to a loss of about 6% of the cell membrane capacitance, at an average rate of 0.1-0.2% s-1. 4. At even higher cytoplasmic [Ca2+] (greater than 3 microM), the reverse effect was observed. The capacitance increased gradually by up to 40%, at an average rate of 0.4% s-1. Evidently gradual changes in membrane capacitance can occur by two mechanisms, and both are influenced by cytoplasmic [Ca2+]. 5. Ca2+ frequently stimulated an inward current accompanied by an increase in membrane conductance. 6. The effects described above were observed also when only trace amounts of Ca2+ and chelator were added to the cytosol, and when increases in cytosolic [Ca2+] could have occurred only by endogenous mechanisms. It is suggested that these effects occur also in intact cells during the large [Ca2+] increases known to occur before and during degranulation.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Almers W., Neher E. The Ca signal from fura-2 loaded mast cells depends strongly on the method of dye-loading. FEBS Lett. 1985 Nov 11;192(1):13–18. doi: 10.1016/0014-5793(85)80033-8. [DOI] [PubMed] [Google Scholar]
- Besterman J. M., Airhart J. A., Woodworth R. C., Low R. B. Exocytosis of pinocytosed fluid in cultured cells: kinetic evidence for rapid turnover and compartmentation. J Cell Biol. 1981 Dec;91(3 Pt 1):716–727. doi: 10.1083/jcb.91.3.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chandler D. E., Heuser J. Membrane fusion during secretion: cortical granule exocytosis in sex urchin eggs as studied by quick-freezing and freeze-fracture. J Cell Biol. 1979 Oct;83(1):91–108. doi: 10.1083/jcb.83.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daukas G., Lauffenburger D. A., Zigmond S. Reversible pinocytosis in polymorphonuclear leukocytes. J Cell Biol. 1983 Jun;96(6):1642–1650. doi: 10.1083/jcb.96.6.1642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daukas G., Zigmond S. H. Inhibition of receptor-mediated but not fluid-phase endocytosis in polymorphonuclear leukocytes. J Cell Biol. 1985 Nov;101(5 Pt 1):1673–1679. doi: 10.1083/jcb.101.5.1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dodge F. A., Jr, Rahamimoff R. Co-operative action a calcium ions in transmitter release at the neuromuscular junction. J Physiol. 1967 Nov;193(2):419–432. doi: 10.1113/jphysiol.1967.sp008367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dvorak A. M., Hammond M. E., Morgan E., Orenstein N. S., Galli S. J., Dvorak H. F. Evidence for a vesicular transport mechanism in guinea pig basophilic leukocytes. Lab Invest. 1980 Feb;42(2):263–276. [PubMed] [Google Scholar]
- Fernandez J. M., Neher E., Gomperts B. D. Capacitance measurements reveal stepwise fusion events in degranulating mast cells. 1984 Nov 29-Dec 5Nature. 312(5993):453–455. doi: 10.1038/312453a0. [DOI] [PubMed] [Google Scholar]
- Gillespie J. I. The effect of repetitive stimulation on the passive electrical properties of the presynaptic terminal of the squid giant synapse. Proc R Soc Lond B Biol Sci. 1979 Dec 31;206(1164):293–306. doi: 10.1098/rspb.1979.0106. [DOI] [PubMed] [Google Scholar]
- Goldmacher V. S., Tinnel N. L., Nelson B. C. Evidence that pinocytosis in lymphoid cells has a low capacity. J Cell Biol. 1986 Apr;102(4):1312–1319. doi: 10.1083/jcb.102.4.1312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Hellam D. C., Podolsky R. J. Force measurements in skinned muscle fibres. J Physiol. 1969 Feb;200(3):807–819. doi: 10.1113/jphysiol.1969.sp008723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaffe L. A., Hagiwara S., Kado R. T. The time course of cortical vesicle fusion in sea urchin eggs observed as membrane capacitance changes. Dev Biol. 1978 Nov;67(1):243–248. doi: 10.1016/0012-1606(78)90314-7. [DOI] [PubMed] [Google Scholar]
- Lawson D., Raff M. C., Gomperts B., Fewtrell C., Gilula N. B. Molecular events during membrane fusion. A study of exocytosis in rat peritoneal mast cells. J Cell Biol. 1977 Feb;72(2):242–259. doi: 10.1083/jcb.72.2.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindau M., Fernandez J. M. IgE-mediated degranulation of mast cells does not require opening of ion channels. Nature. 1986 Jan 9;319(6049):150–153. doi: 10.1038/319150a0. [DOI] [PubMed] [Google Scholar]
- Neher E., Almers W. Fast calcium transients in rat peritoneal mast cells are not sufficient to trigger exocytosis. EMBO J. 1986 Jan;5(1):51–53. doi: 10.1002/j.1460-2075.1986.tb04176.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neher E., Marty A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6712–6716. doi: 10.1073/pnas.79.21.6712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prusch R. D., Hannafin J. A. Sucrose uptake by pinocytosis in Amoeba proteus and the influence of external calcium. J Gen Physiol. 1979 Oct;74(4):523–535. doi: 10.1085/jgp.74.4.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinman R. M., Brodie S. E., Cohn Z. A. Membrane flow during pinocytosis. A stereologic analysis. J Cell Biol. 1976 Mar;68(3):665–687. doi: 10.1083/jcb.68.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinman R. M., Mellman I. S., Muller W. A., Cohn Z. A. Endocytosis and the recycling of plasma membrane. J Cell Biol. 1983 Jan;96(1):1–27. doi: 10.1083/jcb.96.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thilo L. Selective internalization of granule membrane after secretion in mast cells. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1711–1715. doi: 10.1073/pnas.82.6.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Villegas R., Villegas G. M., Blei M., Herrera F. C., Villegas J. Nonelectrolyte penetration and sodium fluxes through the axolemma of resting and stimulated medium sized axons of the squid Doryteuthis plei. J Gen Physiol. 1966 Sep;50(1):43–59. doi: 10.1085/jgp.50.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White J. R., Ishizaka T., Ishizaka K., Sha'afi R. Direct demonstration of increased intracellular concentration of free calcium as measured by quin-2 in stimulated rat peritoneal mast cell. Proc Natl Acad Sci U S A. 1984 Jul;81(13):3978–3982. doi: 10.1073/pnas.81.13.3978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wileman T., Harding C., Stahl P. Receptor-mediated endocytosis. Biochem J. 1985 Nov 15;232(1):1–14. doi: 10.1042/bj2320001. [DOI] [PMC free article] [PubMed] [Google Scholar]