Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Mar 25:2023.03.24.534152. [Version 1] doi: 10.1101/2023.03.24.534152

Clonal differences underlie variable responses to sequential and prolonged treatment

Dylan L Schaff, Aria J Fasse, Phoebe E White, Robert J Vander Velde, Sydney M Shaffer
PMCID: PMC10055379  PMID: 36993721

Summary

Cancer cells exhibit dramatic differences in gene expression at the single-cell level which can predict whether they become resistant to treatment. Treatment perpetuates this heterogeneity, resulting in a diversity of cell states among resistant clones. However, it remains unclear whether these differences lead to distinct responses when another treatment is applied or the same treatment is continued. In this study, we combined single-cell RNA-sequencing with barcoding to track resistant clones through prolonged and sequential treatments. We found that cells within the same clone have similar gene expression states after multiple rounds of treatment. Moreover, we demonstrated that individual clones have distinct and differing fates, including growth, survival, or death, when subjected to a second treatment or when the first treatment is continued. By identifying gene expression states that predict clone survival, this work provides a foundation for selecting optimal therapies that target the most aggressive resistant clones within a tumor.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES