Skip to main content
Journal of Zhejiang University (Medical Sciences) logoLink to Journal of Zhejiang University (Medical Sciences)
. 2022 Aug 5;51(4):500–506. [Article in Chinese] doi: 10.3724/zdxbyxb-2022-0077

间充质干细胞来源的外泌体调节缺血性脑卒中后炎症反应的研究进展

Research progress of mesenchymal stem cell-derived exosomes on inflammatory response after ischemic stroke

Lujia ZHOU 1, Jingyan LIANG 1,2, Tianqing XIONG 1,2
PMCID: PMC10264999  PMID: 37202091

Abstract

缺血性脑卒中发病急、致死率高,而抑制神经炎症是治疗缺血性脑卒中的关键。间充质干细胞(MSC)来源的外泌体因其来源广、直径小、有效成分多而被广泛关注。近期研究表明,MSC来源的外泌体可抑制小胶质细胞、星形胶质细胞的促炎反应活性,刺激其神经保护活性;也可通过调节免疫细胞和炎症介质抑制神经炎症。本文阐述了MSC来源的外泌体在缺血性脑卒中后神经炎症中的作用及其潜在机制,希望为其在缺血性脑卒中疾病的治疗提供思路和借鉴。


间充质干细胞(mesenchymal stem cell,MSC);间充质干细胞来源的外泌体(mesenchymal stem cell-derived exosome,MSC-Exo);微RNA(microRNA,miRNA,miR);Toll样受体(Toll-like receptor,TLR);核因子-κB(nuclear factor-κB,NF-κB);丝裂原激活蛋白激酶(mitogen activation protein kinase,MAPK);磷脂酰肌醇3激酶(phosphoinositide 3-kinase,PI3K);肿瘤坏死因子(tumor necrosis factor,TNF);白介素(interleukin,IL);核因子E2相关因子(nuclear factor erythroid 2-related factor,Nrf);辅助性T细胞 (helper T cell,Th) ;

在过去二十年里,缺血性脑卒中已经成为全球第二大死亡原因,脑卒中患者约有75%~85%为缺血性脑卒中 [1] 。目前,用于临床治疗缺血性脑卒中的药物只有注射用组织型纤溶酶原激活物,但其有效抢救半暗带组织的时间窗仅为4.5 h。由于受溶栓时间窗的限制,大多数患者仍缺乏有效治疗 [2] 。因此,寻找能够有效治疗缺血性脑卒中的替代药物至关重要。

治疗缺血性脑卒中的关键在于患者症状发作后尽快治疗,以减少神经元凋亡 [3] 。神经炎症和氧 化应激一直被认为是诱导神经元凋亡的关键因素 [ 4- 5] 。缺血区神经元凋亡通常可以引起继发性免疫/炎症反应,包括神经胶质细胞的激活以及细胞因子的产生 [6] 。因此,抑制胶质细胞活化、调节细胞因子平衡是神经保护的重要策略。

MSC具有诱导血管生成、抗凋亡和免疫调节功能,在治疗缺血性脑卒中方面受到学者们的广泛关注。有研究证明,MSC-Exo是MSC治疗作用的关键效应物 [7] 。外泌体作为纳米级大小的细胞分泌物,可以穿过血脑屏障,从而成为许多神经系统疾病的治疗靶点 [8] 。研究表明,外泌体是神经元-胶质细胞间交流的重要调节物质,而MSC-Exo可以对此过程进行干预治疗 [9] 。本文就MSC-Exo在缺血性脑卒中后炎症反应中的作用和可能机制进行综述,以期为缺血性脑卒中的临床治疗提供新的思路。

MSC-Exo及其对神经炎症的作用

MSC-Exo是由MSC来源干细胞分泌的脂质双层膜结构囊泡,直径为30~150 nm,含有多种具有生物学功能的脂质、蛋白质、RNA和细胞因子,并借此干预相邻或远隔细胞的信号转导。MSC-Exo可以轻易穿过血脑屏障;可耐受冷冻和解冻,因此易保存 [ 10- 11] 。由于MSC的多细胞分化潜能,MSC-Exo具有自我更新能力;同时,MSC-Exo的体内组织来源广泛,可从脂肪组织、骨髓、胚胎干细胞、牙髓、胎盘、脐带及脐带血和沃顿胶质等多种体内组织或体液中获取 [12] ,因此MSC-Exo资源不缺。

不同来源MSC-Exo具有不同的生物学功能,如在小鼠大脑中动脉缺血模型中使用人类脐带血干细胞来源外泌体可以减小梗死面积 [13] ;人骨髓干细胞来源外泌体具有改善神经损伤和长期神经保护 [14] 等作用。目前,关于啮齿动物和人类细胞分泌外泌体的不同生理功能相关研究较多,但尚无通过大脑中动脉缺血动物模型进行不同来源MSC-Exo的治疗效果评价比较研究。因此,不同来源MSC-Exo的治疗差别目前尚未知。

目前研究主要针对缺血的局部炎症反应,而通过免疫活性细胞抑制剂或炎症介质改善缺血性脑卒中后炎症反应的相关研究尚缺乏。MSC-Exo通过调节多种细胞及细胞因子发挥作用,有望成为缺血性脑卒中免疫调节机制中新的关键效应物。已有研究显示,MSC-Exo能够抑制神经炎症,减少神经元凋亡,并促进神经发生 [15] 。Cai等 [16] 发现,MSC-Exo通过递送miR-542-3p抑制TLR4,减少NF-κB的活化和白细胞浸润,阻止神经胶质细胞的炎症激活反应。而Giunti等 [17] 基于脑脊髓炎病毒感染引起的慢性进行性脱髓鞘病小鼠,发现注射MSC-Exo可减少脊髓浸润数,下调小鼠大脑中胶质细胞原纤维酸性蛋白和离子化钙结合适配分子1的表达,并发现MSC-Exo中负载的miR-467f和miR-466q可通过抑制p38 MAPK信号通路从而抑制胶质细胞的激活反应。可见MSC-Exo抗炎作用的特征主要是抑制胶质细胞的炎症激活反应,同时通过免疫分子下调促炎性细胞因子,从而减少炎症作用的影响。

MSC-Exo通过胶质细胞调节缺血性脑卒中神经炎症

神经胶质细胞是神经组织的重要组成部分,发挥支持并保护神经元的作用,同时分泌大量活性物质调节神经元的生长发育,并维持脑组织的正常内环境。在缺血损伤部位,小胶质细胞和星形胶质细胞被大量激活,共同参与损伤部位的炎症反应 [18] 。小胶质细胞和星形胶质细胞是参与并维持脑组织微环境平衡的重要因素,有大量研究表明,MSC-Exo在调节小胶质细胞和星形胶质细胞活性方面发挥了关键作用 [19]

MSC-Exo抑制小胶质细胞炎症表型活化

小胶质细胞的表型转换是机体缺血性脑卒中损伤后最早出现的炎症表现,其中M1型小胶质细胞参与促炎反应并能够提呈抗原;M2型小胶质细胞清除坏死组织,并刺激组织修复 [ 19- 21] 。因此,M1型和M2型之间的表型转换对于机体缺血性脑卒中后损伤的治疗具有重要意义,促进M2型转换将减少促炎性细胞因子从而有助于脑组织修复。基于流行性乙型脑炎病毒感染的小鼠模型,研究发现MSC-Exo可以抑制炎症反应,减少M1型小胶质细胞活化,激活M2型小胶质细胞,改善神经元损伤、血脑屏障破坏和病毒载量,从而发挥对小鼠神经炎症的治疗作用 [20] 。MSC和MSC-Exo可以抑制小胶质细胞活化并促进M1型向M2型转换,但MSC-Exo对炎症反应调节的精确信号级联反应尚不明确 [ 21- 25]

miRNA是MSC-Exo调节小胶质细胞活性的关键

许多研究表明,miRNA可通过外泌体和外囊泡的形式被负载并运送到特定的靶细胞中,而携带miRNA的MSC-Exo具有调节小胶质细胞活化和抗炎的能力 [ 21- 25] 。MSC-Exo中负载的miR-223-3p可通过抑制小胶质细胞M1型极化介导的炎症,减弱缺血性脑卒中诱导的损伤,同时促进小胶质细胞M2型极化,从而加快缺血性脑卒中后的功能恢复 [21] 。而miR-216b-5p可通过抑制TLR4/ NF-κB并激活PI3K/AKT信号通路,将小胶质细胞从M1型转换到M2型 [22] 。含有miRNA-126的外泌体可抑制卒中小鼠脑细胞中小胶质细胞的活化,减少炎症反应并增加神经发生和血管生成 [23] 。MSC-Exo中负载的miR-30d-5p可通过抑制自噬介导的M1型小胶质细胞极化来抑制神经元损伤 [24]

MSC-Exo参与信号通路介导小胶质细胞活化

研究发现,多种细胞信号级联反应与M2型小胶质细胞活化相关,如环磷酸腺苷反应元件结合蛋白和NF-κB是其中两种主要的转录因子 [ 25- 26] 。Diaz等 [27] 研究表明,MSC-Exo通过产生TNF-α和前列素E2等抑制NF-κB通路,从而促进M2型极化。除了上述信号级联反应外,MSC-Exo还可以通过其他途径如TLR4、AKT和MAPK等参与促进M2型极化 [ 1028]

MSC-Exo通过细胞因子和神经生长因子调节小胶质细胞活化

MSC-Exo含有大量的细胞因子、神经生长因子以及抗炎细胞因子,通过调节小胶质细胞的活性导致细胞外环境显著性改善 [29] 。研究发现,MSC-Exo可产生神经生长因子,并抑制促炎因子的产生 [30] 。同时,Xin等 [31] 研究表明,MSC-Exo可能通过抑制IL-1β、TNF-α和IL-6等参与抑制小胶质细胞活化,同时抑制胆固醇-25-羟化酶(该酶可加剧脑炎症并激活小胶质细胞),从而进一步抑制小胶质细胞的活化。

MSC-Exo下调星形胶质细胞的促炎能力

相比小胶质细胞,缺血性脑卒中后响应刺激的星形胶质细胞数更多,且炎症反应时间更长 [6] ,因此星形胶质细胞是限制中枢炎症有效的靶点。星形胶质细胞对局灶性缺血反应的主要模式表现为稳态/神经保护反应和反应性星形胶质细胞增多症 [30] 。由神经炎症诱导的反应性星形胶质细胞为A1型,缺血诱导的反应性星形胶质细胞为A2型 [32] 。A1型释放神经毒性因子迅速杀死神经元和少突胶质细胞;而A2型通过上调神经生长因子发挥神经保护作用。因此,诱导A2型活性、抑制A1型活性成为诱导星形胶质细胞治疗缺血性脑卒中的关键。

MSC-Exo降低A1型细胞活化能力

MSC-Exo具有促进A2型细胞活性、降低A1型细胞活性的作用 [33] 。MSC-Exo可以通过调节Nrf2-NF-κB信号通路来恢复A1型星形胶质细胞的活化,减轻体内外炎症反应 [20] 。寻找MSC-Exo作用于星形胶质细胞的信号级联通路是目前仍须进一步研究的问题。

MSC-Exo通过细胞因子调节局部炎症

调节炎症介质是MSC-Exo作用于星形胶质细胞的关键。MSC-Exo通过减少TNF-α和IL-1β促炎性细胞因子,使A2型细胞活性增强 [34] 。除了直接调控星形胶质细胞的活性外,MSC还能够通过升高星形胶质细胞衍生的胰岛素样生长因子1、表皮生长因子、血管表皮生长因子和碱性成纤维细胞生长因子的表达来改善神经功能 [35]

上述研究表明,MSC-Exo可通过抑制A1型星形胶质细胞的活化,减少促炎性细胞因子的释放,促进A2型星形胶质细胞的生成,而其释放的神经生长因子在此过程中起关键作用 [36]

MSC-Exo通过免疫细胞和炎症介质调节缺血性脑卒中神经炎症

MSC-Exo调节免疫细胞抑制神经炎症

在缺血性脑卒中脑组织损伤的情况下,MSC-Exo可以介导免疫细胞如抑制抗原提呈细胞活性,下调缺血性脑卒中部位B淋巴细胞、自然杀伤细胞、T淋巴细胞和巨噬细胞的表达 [ 37- 38] ,并参与免疫反应的调节与平衡,最终通过免疫细胞的增殖、表达、分泌抑制炎症反应,从而达到保护神经元损伤的目的,为后续神经与血管的再生提供良好的微环境 [ 36- 40] 。其中,T淋巴细胞发挥了重要作用, Th和调节性T细胞在抗炎作用中有突出的表现。

外泌体可诱导Th1转化为Th2,同时增加了调节性T细胞的水平,并促进了外周血单核细胞和CD3 +T细胞的凋亡,从而减轻炎症 [ 39- 41] 。越来越多的证据表明,Th表型转换来自于不同的诱导条件,但其分子生物学机制复杂交错,仍有待进一步研究及总结。MSC-Exo对调节性B细胞的影响在肿瘤免疫逃避中研究较多,而在缺血性脑卒中仍有待探索 [42]

MSC-Exo调节炎症介质抑制神经炎症

IL-1、IL-6、TGF-β和IL-10是与缺血性脑卒中后免疫反应密切相关的炎症介质 [ 63437] 。IL-1水平在缺血性脑卒中损伤后若干小时内增加,增加的IL-1水平会刺激其他细胞因子、趋化因子和细胞黏附分子的分泌,这些因子最终会导致血脑屏障破坏 [43] 。多项研究表明,MSC移植可导致小胶质细胞IL-1产生减少,并使调节性T细胞极化为抗炎表型 [ 44- 45] 。缺血性脑卒中后参与促炎反应的另一种重要细胞因子是IL-6,局灶性损伤大鼠经MSC-Exo处理后,其大脑中IL-6水平显著降低 [46] 。MSC-Exo可以促进抗炎细胞因子TGF-β的产生,并通过TGF-β/Smad2/3途径激活小胶质细胞,延缓小胶质细胞活化 [ 47- 48] 。目前MSC-Exo刺激IL-10升高的相关研究报道较少。炎症介质作为MSC-Exo作用于炎症部位的一个重要靶点,其促进损伤区域免疫抑制微环境的具体机制还不明确。因此,深入研究MSC-Exo对于炎症介质的作用,并通过纯化及分离外泌体的有效分子,有助于缺血性脑卒中后神经炎症反应的靶向治疗药物研发。

结语

基于MSC-Exo的免疫调节和再生能力,MSC-Exo有望成为治疗神经炎症的新型治疗方法。MSC-Exo的直径小,可以穿透血脑屏障,因此可作为一种纳米药物输送到炎症部位,并通过多种调控途径对小胶质细胞、星形胶质细胞、免疫细胞和炎症介质进行调节,对于血脑屏障、中枢神经和外周组织都具有一定的保护作用 [ 720]

作为一种无细胞的缺血性脑卒中疗法,MSC-Exo治疗具有低免疫原性、强稳定性、跨越血脑屏障的能力更好以及治疗中产生血栓和微血管形成风险较小等优势。近年来,越来越多的研究集中于MSC-Exo,且在众多疾病中发现其具有良好的治疗效果 [7] 。然而,在考虑将MSC-Exo作为缺血性脑卒中治疗的临床方案前,仍须克服几个障碍。现阶段MSC-Exo调控缺血性脑卒中后的炎症机制仍不明确,且MSC-Exo的成分尚具有不确定性,难以针对性增强MSC-Exo的治疗效果。同时,MSC-Exo具有异质性和低生产率,仍需要探索新技术用以实现MSC-Exo的大规模生产 [ 48- 49] 。目前仍需大量的基础和临床研究探讨其机制,并建立必要的MSC-Exo生产和质量控制标准,以促使MSC-Exo早日应用于临床治疗中。

COMPETING INTERESTS

所有作者均声明不存在利益冲突

Funding Statement

国家重点研发计划(2016YFE0126000);江苏省“六大人才高峰”高层次人才项目(2018WSN-082);扬州市“绿扬金凤计划”(137012415/5022);扬州大学创新训练项目(X20220737)

References

  • 1.JOHNSON W, ONUMA O, OWOLABI M, et al. Stroke: a global response is needed[J] Bull World Health Organ. . 2016;94(9):634–634A. doi: 10.2471/BLT.16.181636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.王陇德, 彭 斌, 张鸿祺, 等. 《中国脑卒中防治报告2020》概要[J]. 中国脑血管病杂志, 2022, 19(2): 136-144 ; WANG Longde, PENG Bin, ZHANG Hongqi, et al. Summary of Chinese stroke prevention and treatment report 2020 [J]. Chinese Journal of Cerebrovascular Disease, 2022, 19(2): 136-144. (in Chinese)
  • 3.CHAMORRO Á, DIRNAGL U, URRA X, et al. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation[J] Lancet Neurol. . 2016;15(8):869–881. doi: 10.1016/s1474-4422(16)00114-9. [DOI] [PubMed] [Google Scholar]
  • 4.REN J X, LI C, YAN X L, et al. Crosstalk between oxidative stress and ferroptosis/oxytosis in ischemic stroke: possible targets and molecular mechanisms[J] Oxid Med Cell Longev. . 2021;2021:1–13. doi: 10.1155/2021/6643382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.JAYARAJ R L, AZIMULLAH S, BEIRAM R, et al. Neuroinflammation: friend and foe for ischemic stroke[J] J Neuroinflammation. . 2019;16(1):142. doi: 10.1186/s12974-019-1516-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.XU S, LU J, SHAO A, et al. Glial cells: role of the immune response in ischemic stroke[J] Front Immunol. . 2020;11:294. doi: 10.3389/fimmu.2020.00294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.KIM H Y, KIM T J, KANG L, et al. Mesenchymal stem cell-derived magnetic extracellular nanovesicles for targeting and treatment of ischemic stroke[J] Biomaterials. . 2020;243:119942. doi: 10.1016/j.biomaterials.2020.119942. [DOI] [PubMed] [Google Scholar]
  • 8.TIAN T, ZHANG H X, HE C P, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy[J] Biomaterials. . 2018;150:137–149. doi: 10.1016/j.biomaterials.2017.10.012. [DOI] [PubMed] [Google Scholar]
  • 9.MEN Y, YELICK J, JIN S, et al. Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS[J] Nat Commun. . 2019;10(1):4136. doi: 10.1038/s41467-019-11534-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.GAIRE B P, SONG M R, CHOI J W. Sphingosine 1-phosphate receptor subtype 3 (S1P3) contributes to brain injury after transient focal cerebral ischemia via modulating microglial activation and their M1 polarization[J] J Neuroinflammation. . 2018;15(1):284. doi: 10.1186/s12974-018-1323-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.LONG Q, UPADHYA D, HATTIANGADY B, et al. Intranasal MSC-derived A1-exosomes ease inflammation, and prevent abnormal neurogenesis and memory dysfunction after status epilepticus[J/OL] Proc Natl Acad Sci U S A. . 2017;114(17):E3536. doi: 10.1073/pnas.1703920114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.CHANG Y H, WU K C, HARN H J, et al. Exosomes and stem cells in degenerative disease diagnosis and therapy[J] Cell Transplant. . 2018;27(3):349–363. doi: 10.1177/0963689717723636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.NALAMOLU K R, VENKATESH I, MOHANDASS A, et al. Exosomes treatment mitigates ischemic brain damage but does not improve poststroke neurological outcome[J] Cell Physiol Biochem. . 2019;52(6):1280–1291. doi: 10.33594/000000090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.DOEPPNER T R, HERZ J, GÖRGENS A, et al. Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression[J] Stem Cells Transl Med. . 2015;4(10):1131–1143. doi: 10.5966/sctm.2015-0078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.CHEN Y, LI J, MA B, et al. MSC-derived exosomes promote recovery from traumatic brain injury via microglia/macrophages in rat[J] Aging. . 2020;12(18):18274–18296. doi: 10.18632/aging.103692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.CAI G, CAI G, ZHOU H, et al. Mesenchymal stem cell-derived exosome miR-542-3p suppresses inflammation and prevents cerebral infarction[J] Stem Cell Res Ther. . 2021;12(1):2. doi: 10.1186/s13287-020-02030-w. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 17.GIUNTI D, MARINI C, PARODI B, et al. Role of miRNAs shuttled by mesenchymal stem cell-derived small extracellular vesicles in modulating neuroinflammation[J] Sci Rep. . 2021;11(1):1740. doi: 10.1038/s41598-021-81039-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.郭 壮, 周利君. 星形胶质细胞-小胶质细胞的交互对话在神经炎症中的双重作用[J]. 实用医学杂志, 2021, 37(18): 2432-2436 ; GUO Zhuang, ZHOU Lijun. The dual role of astrocyte-microglia interaction dialogue in neuroinflammation[J]. Journal of Practical Medicine, 2021, 37(18): 2432-2436. (in Chinese)
  • 19.XIAN P, HEI Y, WANG R, et al. Mesenchymal stem cell-derived exosomes as a nanotherapeutic agent for amelioration of inflammation-induced astrocyte alterations in mice[J] Theranostics. . 2019;9(20):5956–5975. doi: 10.7150/thno.33872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.BIAN P, YE C, ZHENG X, et al. Mesenchymal stem cells alleviate Japanese encephalitis virus-induced neuroinflammation and mortality[J] Stem Cell Res Ther. . 2017;8(1):38. doi: 10.1186/s13287-017-0486-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.ZHAO Y, GAN Y, XU G, et al. Exosomes from MSCs overexpressing microRNA-223-3p attenuate cerebral ischemia through inhibiting microglial M1 polarization mediated inflammation[J] Life Sci. . 2020;260:118403. doi: 10.1016/j.lfs.2020.118403. [DOI] [PubMed] [Google Scholar]
  • 22.LIU W, RONG Y, WANG J, et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization[J] J Neuroinflammation. . 2020;17(1):47. doi: 10.1186/s12974-020-1726-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.GENG W, TANG H, LUO S, et al. Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation[J]. Am J Transl Res. 2019, 11(2): 780-792 . [PMC free article] [PubMed]
  • 24.JIANG M, WANG H, JIN M, et al. Exosomes from MiR-30d-5p-ADSCs reverse acute ischemic stroke-induced, autophagy-mediated brain injury by promoting M2 microglial/macrophage polarization[J] Cell Physiol Biochem. . 2018;47(2):864–878. doi: 10.1159/000490078. [DOI] [PubMed] [Google Scholar]
  • 25.CHANG C Y, WU C C, WANG J D, et al. DHA attenuated Japanese encephalitis virus infection-induced neuroinflammation and neuronal cell death in cultured rat neuron/ glia[J] Brain Behav Immun. . 2021;93:194–205. doi: 10.1016/j.bbi.2021.01.012. [DOI] [PubMed] [Google Scholar]
  • 26.KANDEL E R. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB[J] Mol Brain. . 2012;5(1):14. doi: 10.1186/1756-6606-5-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.DIAZ M F, VAIDYA A B, EVANS S M, et al. Biomechanical forces promote immune regulatory function of bone marrow mesenchymal stromal cells[J] Stem Cells. . 2017;35(5):1259–1272. doi: 10.1002/stem.2587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.LIU W, YU M, XIE D, et al. Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway[J] Stem Cell Res Ther. . 2020;11(1):259. doi: 10.1371/journal.pone.0186937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.LV B, LI F, FANG J, et al. Activated microglia induce bone marrow mesenchymal stem cells to produce glial cell-derived neurotrophic factor and protect neurons against oxygen-glucose deprivation injury[J] Front Cell Neurosci. . 2016;10:283. doi: 10.3389/fncel.2016.00283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.HARRELL C R, VOLAREVIC A, DJONOV V, et al. Mesenchymal stem cell-derived exosomes as new remedy for the treatment of neurocognitive disorders[J] Int J Mol Sci. . 2021;22(3):1433. doi: 10.3390/ijms22031433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.XIN W Q, WEI W, PAN Y L, et al. Modulating poststroke inflammatory mechanisms: novel aspects of mesenchymal stem cells, extracellular vesicles and microglia[J] World J Stem Cells. . 2021;13(8):1030–1048. doi: 10.4252/wjsc.v13.i8.1030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.VERKHRATSKY A, STEARDO L, PARPURA V, et al. Translational potential of astrocytes in brain disorders[J] Prog Neurobiol. . 2016;144:188–205. doi: 10.1016/j.pneurobio.2015.09.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.NAKANO M, NAGAISHI K, KONARI N, et al. Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes[J] Sci Rep. . 2016;6(1):24805. doi: 10.1038/srep24805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.LIU W, WANG Y, GONG F, et al. Exosomes derived from bone mesenchymal stem cells repair traumatic spinal cord injury by suppressing the activation of A1 neurotoxic reactive astrocytes[J] J Neurotrauma. . 2019;36(3):469–484. doi: 10.1089/neu.2018.5835. [DOI] [PubMed] [Google Scholar]
  • 35.HUAT T J, KHAN A A, ABDULLAH J M, et al. MicroRNA expression profile of bone marrow mesenchymal stem cell-derived neural progenitor by microarray under the influence of EGF, bFGF and IGF-1[J] Genomics Data. . 2015;5:201–205. doi: 10.1016/j.gdata.2015.06.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.ZHU J, LIU Q, JIANG Y, et al. Enhanced angiogenesis promoted by human umbilical mesenchymal stem cell transplantation in stroked mouse is Notch1 signaling associated[J] Neuroscience. . 2015;290:288–299. doi: 10.1016/j.neuroscience.2015.01.038. [DOI] [PubMed] [Google Scholar]
  • 37.WANG S, VAN DE PAVERT S A. Innate lymphoid cells in the central nervous system[J] Front Immunol. . 2022;13:837250. doi: 10.3389/fimmu.2022.837250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.ZHANG B, YEO R W Y, LAI R C, et al. Mesenchymal stromal cell exosome-enhanced regulatory T-cell production through an antigen-presenting cell-mediated pathway[J] Cytotherapy. . 2018;20(5):687–696. doi: 10.1016/j.jcyt.2018.02.372. [DOI] [PubMed] [Google Scholar]
  • 39.PHINNEY D G, DI GIUSEPPE M, NJAH J, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs[J] Nat Commun. . 2015;6(1):8472. doi: 10.1038/ncomms9472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.张 弛, 张 圳, 向秋玲. 间充质干细胞在炎症免疫调节中的作用[J]. 生理科学进展, 2021, 52(6): 456-460 ; ZHANG Chi, ZHANG Zhen, XIANG Qiuling. Role of mesenchymal stem cells in inflammatory and immune regulation [J]. Progress in Physiology, 2021, 52(6): 456-460. (in Chinese)
  • 41.CHEN P M, LIU K J, HSU P J, et al. Induction of immunomodulatory monocytes by human mesenchymal stem cell-derived hepatocyte growth factor through ERK1/2[J] J Leukocyte Biol. . 2014;96(2):295–303. doi: 10.1189/jlb.3A0513-242R. [DOI] [PubMed] [Google Scholar]
  • 42.YE L, ZHANG Q, CHENG Y, et al. Tumor-derived exosomal HMGB1 fosters hepatocellular carcinoma immune evasion by promoting TIM-1 + regulatory B cell expansion[J] . J Immunother Cancer. . 2018;6(1):145. doi: 10.1186/s40425-018-0451-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.HAUPTMANN J, JOHANN L, MARINI F, et al. Interleukin-1 promotes autoimmune neuroinflammation by suppressing endothelial heme oxygenase-1 at the blood-brain barrier[J] Acta Neuropathol. . 2020;140(4):549–567. doi: 10.1007/s00401-020-02187-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.EBRAHIM N A, LEACH L. Transendothelial migration of human umbilical mesenchymal stem cells across uterine endothelial monolayers: junctional dynamics and putative mechanisms[J] Placenta. . 2016;48:87–98. doi: 10.1016/j.placenta.2016.10.014. [DOI] [PubMed] [Google Scholar]
  • 45.HEGYI B, KÖRNYEI Z, FERENCZI S, et al. Regulation of mouse microglia activation and effector functions by bone marrow-derived mesenchymal stem cells[J] Stem Cells Dev. . 2014;23(21):2600–2612. doi: 10.1089/scd.2014.0088. [DOI] [PubMed] [Google Scholar]
  • 46.KARLUPIA N, MANLEY N C, PRASAD K, et al. Intraarterial transplantation of human umbilical cord blood mononuclear cells is more efficacious and safer compared with umbilical cord mesenchymal stromal cells in a rodent stroke model[J] Stem Cell Res Ther. . 2014;5(2):45. doi: 10.1186/scrt434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.DABROWSKA S, ANDRZEJEWSKA A, STRZEMECKI D, et al. Human bone marrow mesenchymal stem cell-derived extracellular vesicles attenuate neuroinflammation evoked by focal brain injury in rats[J] J Neuroinflammation. . 2019;16(1):216. doi: 10.1186/s12974-019-1602-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.YAMASHITA T, TAKAHASHI Y, TAKAKURA Y. Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application[J] Biol Pharmaceutical Bull. . 2018;41(6):835–842. doi: 10.1248/bpb.b18-00133. [DOI] [PubMed] [Google Scholar]
  • 49.ALLEGRETTA C, D’AMICO E, MANUTI V, et al. Mesenchymal stem cell-derived extracellular vesicles and their therapeutic use in central nervous system demyelinating disorders[J] Int J Mol Sci. . 2022;23(7):3829. doi: 10.3390/ijms23073829. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Zhejiang University (Medical Sciences) are provided here courtesy of Zhejiang University Press

RESOURCES