Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1986 Jan;29(1):116–121. doi: 10.1128/aac.29.1.116

Pharmacokinetics of carumonam in patients with renal insufficiency.

F Horber, H J Egger, E Weidekamm, U C Dubach, F J Frey, P J Probst, K Stoeckel
PMCID: PMC180375  PMID: 3729324

Abstract

The pharmacokinetics of carumonam after a single 1,000-mg intravenous infusion (20 min) were evaluated in four groups of subjects who had various degrees of renal impairment: group 1, CLCR greater than 60 ml/min; group 2, CLCR = 30 to 60 ml/min; group 3, CLCR = 10 to 30 ml/min; and group 4, CLCR less than 10 ml/min). The elimination half-life of carumonam increased with decreasing creatinine clearance (CLCR) from 1.7 h in group 1 to 11.3 h in group 4. Peak carumonam concentration (103 micrograms/ml) and steady-state volume of distribution (12.8 liters) did not change with decreasing CLCR. Total body clearance (r = 0.98), renal clearance (r = 0.98), and nonrenal clearance (r = 0.67) of carumonam correlated with decreasing CLCR. Mean nonrenal clearance was 21 ml/min in group 1 and 12 ml/min in group 4. With regard to dosage, patients with a CLCR above 60 ml/min should receive their standard maintenance dose of carumonam without any changes; patients with a CLCR between 30 and 60 ml/min should receive the dose every 12 h; and individuals with a CLCR between 10 and 30 ml/min should be given the dose once a day. Patients with a CLCR of less than 10 ml/min should receive one-half of the dose once a day. Our recommended dosage regimens should produce within the CLCR borderlines of each group average plasma concentrations that are between one and two times that achieved in normal subjects with a t.i.d. dosage regimen.

Full text

PDF
116

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolton W. K., Scheld W. M., Spyker D. A., Sande M. A. Pharmacokinetics of cefoperazone in normal volunteers and subjects with renal insufficiency. Antimicrob Agents Chemother. 1981 May;19(5):821–825. doi: 10.1128/aac.19.5.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cockcroft D. W., Gault M. H. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41. doi: 10.1159/000180580. [DOI] [PubMed] [Google Scholar]
  3. Dettli L. Drug dosage in renal disease. Clin Pharmacokinet. 1976;1(2):126–134. doi: 10.2165/00003088-197601020-00004. [DOI] [PubMed] [Google Scholar]
  4. Drayer D. E., Lowenthal D. T., Restivo K. M., Schwartz A., Cook C. E., Reidenberg M. M. Steady-state serum levels of quinidine and active metabolites in cardiac patients with varying degrees of renal function. Clin Pharmacol Ther. 1978 Jul;24(1):31–39. doi: 10.1002/cpt197824131. [DOI] [PubMed] [Google Scholar]
  5. Gibson T. P., Atkinson A. J., Jr, Matusik E., Nelson L. D., Briggs W. A. Kinetics of procainamide and N-acetylprocainamide in renal failure. Kidney Int. 1977 Dec;12(6):422–429. doi: 10.1038/ki.1977.133. [DOI] [PubMed] [Google Scholar]
  6. Gibson T. P., Granneman G. R., Kallal J. E., Sennello L. T. Cefsulodin kinetics in renal impairment. Clin Pharmacol Ther. 1982 May;31(5):602–608. doi: 10.1038/clpt.1982.84. [DOI] [PubMed] [Google Scholar]
  7. Imada A., Kondo M., Okonogi K., Yukishige K., Kuno M. In vitro and in vivo antibacterial activities of carumonam (AMA-1080), a new N-sulfonated monocyclic beta-lactam antibiotic. Antimicrob Agents Chemother. 1985 May;27(5):821–827. doi: 10.1128/aac.27.5.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Leber H. W., Schütterle G. Oxidative drug metabolism in liver microsomes from uremic rats. Kidney Int. 1972 Sep;2(3):152–158. doi: 10.1038/ki.1972.85. [DOI] [PubMed] [Google Scholar]
  9. Mezey E., Tobon F. Rates of ethanol clearance and activities of the ethanol-oxidizing enzymes in chronic alcoholic patients. Gastroenterology. 1971 Nov;61(5):707–715. [PubMed] [Google Scholar]
  10. Reidenberg M. M. The binding of drugs to plasma proteins and the interpretation of measurements of plasma concentrations of drugs in patients with poor renal function. Am J Med. 1977 Apr;62(4):466–470. doi: 10.1016/0002-9343(77)90398-9. [DOI] [PubMed] [Google Scholar]
  11. Stoeckel K., Koup J. R. Pharmacokinetics of ceftriaxone in patients with renal and liver insufficiency and correlations with a physiologic nonlinear protein binding model. Am J Med. 1984 Oct 19;77(4C):26–32. [PubMed] [Google Scholar]
  12. Tozer T. N. Concepts basic to pharmacokinetics. Pharmacol Ther. 1981;12(1):109–131. doi: 10.1016/0163-7258(81)90077-2. [DOI] [PubMed] [Google Scholar]
  13. Tygstrup N. Determination of the hepatic elimination capacity (Lm) of galactose by single injection. Scand J Clin Lab Invest Suppl. 1966;18:118–125. [PubMed] [Google Scholar]
  14. Verbeeck R., Tjandramaga T. B., Mullie A., Verbesselt R., Verberckmoes R., de Schepper P. J. Biotransformation of diflunisal and renal excretion of its glucuronides in renal insufficiency. Br J Clin Pharmacol. 1979 Mar;7(3):273–282. doi: 10.1111/j.1365-2125.1979.tb00932.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Weidekamm E., Stoeckel K., Egger H. J., Ziegler W. H. Single-dose pharmacokinetics of Ro 17-2301 (AMA-1080), a monocyclic beta-lactam, in humans. Antimicrob Agents Chemother. 1984 Dec;26(6):898–902. doi: 10.1128/aac.26.6.898. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES