Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1986 May;374:245–261. doi: 10.1113/jphysiol.1986.sp016077

Taurine transport associated with cell volume regulation in flounder erythrocytes under anisosmotic conditions.

K Fugelli, S M Thoroed
PMCID: PMC1182718  PMID: 3746688

Abstract

The taurine transport of flounder erythrocytes is associated with a cell volume regulation in anisosmotic media. An osmolality reduction leads to a cell volume increase, which is followed by a volume readajustment towards the original level. A 75 mosM reduction is accompanied by a 33 mumol g dry wt.-1 reduction in the cellular taurine content. The reduction in osmolality activates the taurine release mechanism by transiently increasing the rate coefficient for taurine efflux. The rate coefficient for taurine influx is similarly stimulated. This influx is mediated by a Na+-independent transport system. The concomitant activation of influx and efflux suggests a coupling between these two systems. Higher taurine efflux and influx rate coefficients which decayed more slowly with time were measured in cells suspended in Na+-free (choline replacement) media than in the presence of Na+. This suggests that Na+ may play a role in the taurine release mechanism. Noradrenaline induced a cellular swelling at normal osmolality (330 mosM), but had only a minor effect on the taurine efflux and influx and the cellular taurine content. Urea-induced cellular swelling at normal osmolality initiated a volume regulatory process and activated the taurine release mechanism, similarly to an osmolality reduction. These results show that osmolality reduction and cellular swelling are no prerequisites for the activation of the taurine release mechanism and the cell volume readajustment. It is suggested that the dimension of an intracellular solute compartment determines the activation level of this mechanism.

Full text

PDF
245

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. APPELBOOM J. W., BRODSKY W. A., TUTTLE W. S., DIAMOND I. The freezing point depression of mammalian tissues after sudden heating in boiling distilled water. J Gen Physiol. 1958 Jul 20;41(6):1153–1169. doi: 10.1085/jgp.41.6.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baroin A., Garcia-Romeu F., Lamarre T., Motais R. Hormone-induced co-transport with specific pharmacological properties in erythrocytes of rainbow trout, Salmo gairdneri. J Physiol. 1984 May;350:137–157. doi: 10.1113/jphysiol.1984.sp015193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheung R. K., Grinstein S., Dosch H. M., Gelfand E. W. Volume regulation by human lymphocytes: characterization of the ionic basis for regulatory volume decrease. J Cell Physiol. 1982 Aug;112(2):189–196. doi: 10.1002/jcp.1041120206. [DOI] [PubMed] [Google Scholar]
  4. Christensen H. N., Liang M. On the nature of the "non-saturable" migration of amino acids into Ehrlich cells and into rat jejunum. Bibl Laeger. 1966 Mar 14;112(3):524–531. doi: 10.1016/0926-6585(66)90255-x. [DOI] [PubMed] [Google Scholar]
  5. Franconi F., Martini F., Bennardini F., Mangiapane A., Giotti A. Taurine uptake in sarcolemma vesicles isolated from hypertrophic guinea-pig hearts. Biochem Pharmacol. 1981 Apr 1;30(7):693–695. doi: 10.1016/0006-2952(81)90152-0. [DOI] [PubMed] [Google Scholar]
  6. Fugelli K. Regulation of cell volume in flounder (Pleuronectes flesus) erythrocytes accompanying a decrease in plasma osmolarity. Comp Biochem Physiol. 1967 Jul;22(1):253–260. doi: 10.1016/0010-406x(67)90185-5. [DOI] [PubMed] [Google Scholar]
  7. Fugelli K., Zachariassen K. E. The distribution of taurine, gamma-aminobutyric acid and inorganic ions between plasma and erythrocytes in flounder (Platichthys flesus) at different plasma osmolalities. Comp Biochem Physiol A Comp Physiol. 1976;55(2A):173–177. doi: 10.1016/0300-9629(76)90088-8. [DOI] [PubMed] [Google Scholar]
  8. Gardner J. D., Aurbach G. D., Spiegel A. M., Brown E. M. Receptor function and ion transport in turkey erythrocytes. Recent Prog Horm Res. 1976;32:567–595. doi: 10.1016/b978-0-12-571132-6.50031-2. [DOI] [PubMed] [Google Scholar]
  9. Gerard J. F. Volume regulation and alanine transport. Response of isolated axons of Callinectes sapidus Rathbun to hypo-osmotic conditions. Comp Biochem Physiol A Comp Physiol. 1975 May 1;51(1A):225–229. doi: 10.1016/0300-9629(75)90440-5. [DOI] [PubMed] [Google Scholar]
  10. Grinstein S., Dupre A., Rothstein A. Volume regulation by human lymphocytes. Role of calcium. J Gen Physiol. 1982 May;79(5):849–868. doi: 10.1085/jgp.79.5.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grinstein S., Rothstein A., Sarkadi B., Gelfand E. W. Responses of lymphocytes to anisotonic media: volume-regulating behavior. Am J Physiol. 1984 Mar;246(3 Pt 1):C204–C215. doi: 10.1152/ajpcell.1984.246.3.C204. [DOI] [PubMed] [Google Scholar]
  12. Grosso D. S., Roeske W. R., Bressler R. Characterization of a carrier-mediated transport system for taurine in the fetal mouse heart in vitro. J Clin Invest. 1978 Apr;61(4):944–952. doi: 10.1172/JCI109019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hardison W. G., Weiner R. Taurine transport by rat hepatocytes in primary culture. Biochim Biophys Acta. 1980 May 8;598(1):145–152. doi: 10.1016/0005-2736(80)90272-2. [DOI] [PubMed] [Google Scholar]
  14. Hoffmann E. K., Lambert I. H. Amino acid transport and cell volume regulation in Ehrlich ascites tumour cells. J Physiol. 1983 May;338:613–625. doi: 10.1113/jphysiol.1983.sp014692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hoffmann E. K., Simonsen L. O., Lambert I. H. Volume-induced increase of K+ and Cl- permeabilities in Ehrlich ascites tumor cells. Role of internal Ca2+. J Membr Biol. 1984;78(3):211–222. doi: 10.1007/BF01925969. [DOI] [PubMed] [Google Scholar]
  16. Kregenow F. M. The response of duck erythrocytes to norepinephrine and an elevated extracellular potassium. Volume regulation in isotonic media. J Gen Physiol. 1973 Apr;61(4):509–527. doi: 10.1085/jgp.61.4.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Riddick D. H., Kregenow F. M., Orloff J. The effect of norepinephrine and dibutyryl cyclic adenosine monophosphate on cation transport in duck erythrocytes. J Gen Physiol. 1971 Jun;57(6):752–766. doi: 10.1085/jgp.57.6.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rudolph S. A., Greengard P. Effects of catecholamines and prostaglandin E1 on cyclic AMP, cation fluxes, and protein phosphorylation in the frog erythrocyte. J Biol Chem. 1980 Sep 25;255(18):8534–8540. [PubMed] [Google Scholar]
  19. Rudolph S. A., Schafer D. E., Greengard P. Effects of cholera enterotoxin on catecholamine-stimulated changes in cation fluxes, cell volume, and cyclic AMP levels in the turkey erythrocyte. J Biol Chem. 1977 Oct 25;252(20):7132–7139. [PubMed] [Google Scholar]
  20. Sarkadi B., Mack E., Rothstein A. Ionic events during the volume response of human peripheral blood lymphocytes to hypotonic media. I. Distinctions between volume-activated Cl- and K+ conductance pathways. J Gen Physiol. 1984 Apr;83(4):497–512. doi: 10.1085/jgp.83.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schmidt W. F., 3rd, McManus T. J. Ouabain-insensitive salt and water movements in duck red cells. II. Norepinephrine stimulation of sodium plus potassium cotransport. J Gen Physiol. 1977 Jul;70(1):81–97. doi: 10.1085/jgp.70.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schultz S. G., Curran P. F. Coupled transport of sodium and organic solutes. Physiol Rev. 1970 Oct;50(4):637–718. doi: 10.1152/physrev.1970.50.4.637. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES