Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Jun;76(6):2625–2629. doi: 10.1073/pnas.76.6.2625

Reactions of cysteamine and other amine metabolites with glyoxylate and oxygen catalyzed by mammalian D-amino acid oxidase.

G A Hamilton, D J Buckthal, R M Mortensen, K W Zerby
PMCID: PMC383660  PMID: 37501

Abstract

Pig kidney D-amino acid oxidase [D-amino-acid:oxygen oxidoreductase (deaminating), EC 1.4.3.3] catalyzes a rapid uptake of oxygen when high concentrations (50-100 mM) of glyoxylate and the following amines are present under usual assay conditions (pH 8.3): cysteamine, 2-aminoethanol, putrescine, D,L-1-amino-2-propanol, D,L-2-amino-1-propanol, 3-amino-1-propanol, D,L-octopamine, ethylenediamine, and L-cysteine ethyl ester. Notable physiological amines that do not support a rapid O2 reaction under the above conditions include histamine, serotonin, epinephrine, norepinephrine, spermidine, spermine, and cadaverine. A more detailed kinetic investigation of the reactions involving the first four reactive amines listed above indicated that the cysteamine reaction proceeds at a rapid rate even when cysteamine and glyoxylate are present at less than millimolar concentrations, but greater than millimolar concentrations are needed in the other amine reactions in order to observe a reasonable rate. At low concentrations and pH 7.4, the cysteamine-glyoxylate substrate (presumably thiazolidine-2-carboxylic acid) reacts an order of magnitude faster than any other known D-amino acid oxidase substrate. Considerable circumstantial evidence suggests that the reaction involving cysteamine is occurring physiologically, but the reactions of other amines would be occurring in the cell at a very low rate, if at all. It is proposed that the product of the enzymic reaction may be a metabolic effector that can modify the reactivity of proteins or nucleic acids by covalent attachment.

Full text

PDF
2625

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bardsley W. G., Ashford J. S., Hill C. M. Synthesis and oxidation of aminoalkyl-onium compounds by pig kidney diamine oxidase. Biochem J. 1971 May;122(4):557–567. doi: 10.1042/bj1220557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cahill R., Smith R., Westall R. G. A detailed study of the urinary peptides in a patient with osteomalacia and hyperparathyroidism. Clin Sci. 1970 Apr;38(4):519–532. doi: 10.1042/cs0380519. [DOI] [PubMed] [Google Scholar]
  3. Cavallini D., Federici G., Ricci G., Duprè S., Antonucci A. The specificity of cysteamine oxygenase. FEBS Lett. 1975 Aug 15;56(2):348–351. doi: 10.1016/0014-5793(75)81124-0. [DOI] [PubMed] [Google Scholar]
  4. Cromartie T. H., Walsh C. T. Rat kidney L-alpha-hydroxy acid oxidase: isolation of enzyme with one flavine coenzyme per two subunits. Biochemistry. 1975 Jun 17;14(12):2588–2596. doi: 10.1021/bi00683a005. [DOI] [PubMed] [Google Scholar]
  5. Curti B., Ronchi S., Branzoli U., Ferri G., Williams C. H., Jr Improved purification, amino acid analysis and molecular weight of homogenous D-amino acid oxidase from pig kidney. Biochim Biophys Acta. 1973 Dec 19;327(2):266–273. doi: 10.1016/0005-2744(73)90409-9. [DOI] [PubMed] [Google Scholar]
  6. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  7. DIXON M., KLEPPE K. D-AMINO ACID OXIDASE. 3. EFFECT OF PH. Biochim Biophys Acta. 1965 Mar 22;96:383–389. doi: 10.1016/0005-2787(65)90558-7. [DOI] [PubMed] [Google Scholar]
  8. Dixon M., Kenworthy P. D-aspartate oxidase of kidney. Biochim Biophys Acta. 1967 Sep 12;146(1):54–76. doi: 10.1016/0005-2744(67)90073-3. [DOI] [PubMed] [Google Scholar]
  9. Gabay S., Harris S. R. Studies of flavin-adenine dinucleotide-requiring enzymes and phenothiazines. 3. Inhibition kinetics with highly purified D-amino acid oxidase. Biochem Pharmacol. 1967 May;16(5):803–812. doi: 10.1016/0006-2952(67)90053-6. [DOI] [PubMed] [Google Scholar]
  10. Hannonen P., Jänne J., Raina A. Separation and partial purification of S-adenosylmethionine decarboxylase and spermidine and spermine synthases from rat liver. Biochem Biophys Res Commun. 1972 Jan 31;46(2):341–348. doi: 10.1016/s0006-291x(72)80144-x. [DOI] [PubMed] [Google Scholar]
  11. Infante J. P., Kinsella J. E. Phospholipid synthesis in mammary tissue. Choline and ethanolamine kinases: kinetic evidence for two discrete active sites. Lipids. 1976 Oct;11(10):727–735. doi: 10.1007/BF02533046. [DOI] [PubMed] [Google Scholar]
  12. KNAUFF H. G., BOECK F. [On the free amino acids and the ethanolamine in the brain of normal rats, as well as on the behavior of these substances after experimental insulin hypoglycemia]. J Neurochem. 1961 Feb;6:171–182. [PubMed] [Google Scholar]
  13. Kallen R. G. Equilibria for the reaction of cysteine and derivatives with formaldehyde and protons. J Am Chem Soc. 1971 Nov;93(23):6227–6235. doi: 10.1021/ja00752a039. [DOI] [PubMed] [Google Scholar]
  14. Korniat E. K., Beeler D. A. Water-soluble phospholipid precursor pool-sizes in quick-frozen and unfrozen rat livers. Anal Biochem. 1975 Nov;69(1):300–305. doi: 10.1016/0003-2697(75)90592-8. [DOI] [PubMed] [Google Scholar]
  15. Krebs H. A. Metabolism of amino-acids: Deamination of amino-acids. Biochem J. 1935 Jul;29(7):1620–1644. doi: 10.1042/bj0291620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LIANG C. C. Studies on experimental thiamine deficiency. Trends of keto acid formtion and detection of glyoxylic acid. Biochem J. 1962 Mar;82:429–434. doi: 10.1042/bj0820429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Lienhard G. E., Jencks W. P. Thiol addition to the carbonyl group. Equilibria and kinetics. J Am Chem Soc. 1966 Sep 5;88(17):3982–3994. doi: 10.1021/ja00969a017. [DOI] [PubMed] [Google Scholar]
  19. MUNDY R. L., HEIFFER M. H., MEHLMAN B. Mechanism of beta-mercaptoethylamine-induced hypotension in the dog. Am J Physiol. 1963 Jun;204:997–1000. doi: 10.1152/ajplegacy.1963.204.6.997. [DOI] [PubMed] [Google Scholar]
  20. Molinoff P. B., Axelrod J. Distribution and turnover of octopamine in tissues. J Neurochem. 1972 Jan;19(1):157–163. doi: 10.1111/j.1471-4159.1972.tb01265.x. [DOI] [PubMed] [Google Scholar]
  21. NAKADA H. I. GLUTAMIC-GLYCINE TRANSAMINASE FROM RAT LIVER. J Biol Chem. 1964 Feb;239:468–471. [PubMed] [Google Scholar]
  22. RAO N. A., RAMAKRISHNAN T. The interaction of glyoxylate with cysteine and its application to the assay of isocitritase and of transaminases involving glyoxylate. Biochim Biophys Acta. 1962 Apr 9;58:262–265. doi: 10.1016/0006-3002(62)91008-9. [DOI] [PubMed] [Google Scholar]
  23. Russell D. H., Lombardini J. P. Polyamines. (1) Enhanced s-adenosyl-L-methionine decarboxylase in rapid growth systems, and (2) the relationships between polyamine concentration and RNA accumulation. Biochim Biophys Acta. 1971 Jun 30;240(2):273–286. doi: 10.1016/0005-2787(71)90666-6. [DOI] [PubMed] [Google Scholar]
  24. SCHMIR G. L. THE EFFECT OF STRUCTURAL VARIATION ON THE HYDROLYSIS OF DELTA-2-THIAZOLINES. J Am Chem Soc. 1965 Jun 20;87:2743–2751. doi: 10.1021/ja01090a036. [DOI] [PubMed] [Google Scholar]
  25. Selye H., Szabo S. Experimental model for production of perforating duodenal ulcers by cysteamine in the rat. Nature. 1973 Aug 17;244(5416):458–459. doi: 10.1038/244458a0. [DOI] [PubMed] [Google Scholar]
  26. Stewart P. R., Quayle J. R. The synergistic decarboxylation of glyoxylate and 2-oxoglutarate by an enzyme system from pig-liver mitochondria. Biochem J. 1967 Mar;102(3):885–897. doi: 10.1042/bj1020885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sung C. P., Johnstone R. M. Phosphorylation of choline and ethanolamine in Ehrlich ascites-carcinoma cells. Biochem J. 1967 Nov;105(2):497–503. doi: 10.1042/bj1050497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Szabo S., Reynolds E. S., Lictenberger L. M., Haith L. R., Jr, Dzau V. J. Pathogenesis of duodenal ulcer. Gastric hyperacidity caused by propionitrile and cysteamine in rats. Res Commun Chem Pathol Pharmacol. 1977 Feb;16(2):311–323. [PubMed] [Google Scholar]
  29. TALLAN H. H., MOORE S., STEIN W. H. Studies on the free amino acids and related compounds in the tissues of the cat. J Biol Chem. 1954 Dec;211(2):927–939. [PubMed] [Google Scholar]
  30. Tabor C. W., Tabor H. 1,4-Diaminobutane (putrescine), spermidine, and spermine. Annu Rev Biochem. 1976;45:285–306. doi: 10.1146/annurev.bi.45.070176.001441. [DOI] [PubMed] [Google Scholar]
  31. Turner J. M., Willetts A. J. Amino ketone formation and aminopropanol-dehydrogenase activity in rat-liver preparations. Biochem J. 1967 Feb;102(2):511–519. doi: 10.1042/bj1020511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vellan E. J., Gjessing L. R., Stalsberg H. Free amino acids in the pineal and pituitary glands of human brain. J Neurochem. 1970 May;17(5):699–701. doi: 10.1111/j.1471-4159.1970.tb00551.x. [DOI] [PubMed] [Google Scholar]
  33. Weimer W. R., Neims A. H. Hog cerebellar D-amino acid oxidase and its histochemical and immunofluorescent localization. J Neurochem. 1977 Mar;28(3):559–572. doi: 10.1111/j.1471-4159.1977.tb10427.x. [DOI] [PubMed] [Google Scholar]
  34. Weinhold P. A., Rethy V. B. The separation, purification, and characterization of ethanolamine kinase and choline kinase from rat liver. Biochemistry. 1974 Dec 3;13(25):5135–5141. doi: 10.1021/bi00722a013. [DOI] [PubMed] [Google Scholar]
  35. Willetts A. The phosphorylation and subsequent metabolism of 1-aminopropan-2-ol. Biochim Biophys Acta. 1974 Oct 8;362(3):448–456. doi: 10.1016/0304-4165(74)90140-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES