Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 12;5(3):179–190. doi: 10.1016/0166-3542(85)90050-6

The potential use of liposome-mediated antiviral therapy

Wayne C Koff 1,, Isaiah J Fidler 1
PMCID: PMC7173127  PMID: 3896138

Abstract

The natural targeting of liposomes to cells of the reticuloendothelial system should be exploited to examine whether selective delivery of antiviral or immunomodulatory agents could be beneficial for the treatment of viral diseases. In this review we discuss the potential use of liposomes in the treatment of virus diseases, the targeting of liposome-encapsulated immunomodulators to macrophages in order to render these cells cytolytic for virus-infected cells, and the targeting of liposome-encapsulated antiviral drugs to macrophages to achieve direct suppression of virus replication within these cells.

Keywords: liposomes, macrophage activation, drug targeting

References

  • 1.Glasgow L.A. Biology and pathogenesis of viral infections. In: Galasso G.J., Merigan T.C., Buchanan R.A., editors. Antiviral Agents and Viral Diseases of Man. Raven Press; New York: 1979. pp. 39–76. [Google Scholar]
  • 2.Vilček J. Fundamentals of virus structure and replication. In: Galasso G.J., Merigan T.C., Buchanan R.A., editors. Antiviral Agents and Viral Diseases of Man. Raven Press; New York: 1979. pp. 1–38. [Google Scholar]
  • 3.Smith R.A., Sidwell R.W., Robins R.K. Antiviral mechanisms of action. Ann. Rev. Pharmacol. Toxicol. 1980;20:259–284. doi: 10.1146/annurev.pa.20.040180.001355. [DOI] [PubMed] [Google Scholar]
  • 4.McIntosh K., Wilfert C., Cherneskey M., Plotkin S., Mattheis M.J. Summary on a workshop on new and useful techniques in rapid viral diagnosis. J. Infect. Dis. 1980;142:793–802. doi: 10.1093/infdis/142.5.793. [DOI] [PubMed] [Google Scholar]
  • 5.Gregoriadis G., Neorungen D.E., Hunt R. Fate of liposome-associated agents injected into normal and tumor-bearing rodents. Life Sci. 1977;21:357–370. doi: 10.1016/0024-3205(77)90516-1. [DOI] [PubMed] [Google Scholar]
  • 6.Poste G., Bucana C., Raz A., Bugelski P., Kirsh R., Fidler I.J. Analysis of the fate of systemically administered liposomes and implications for their use in drug delivery. Cancer Res. 1982;42:1412–1422. [PubMed] [Google Scholar]
  • 7.Fraser-Smith E.B., Eppstein D.A., Larsen M.A., Matthews T.R. Protective effect of a muramyl dipeptide analog encapsulated in or mixed with liposomes against Candida albicans infection. Infect. Immun. 1983;39:172–178. doi: 10.1128/iai.39.1.172-178.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Graybill J.R., Craven P.C., Taylor R.L., Williams D.M., Magee W.E. Treatment of murine cryptococcosis with liposome-associated amphotericin B. J. Infect. Dis. 1982;145:748–752. doi: 10.1093/infdis/145.2.748. [DOI] [PubMed] [Google Scholar]
  • 9.Taylor R.L., Williams D.M., Craven P.C., Graybill J.R., Drutz D.J., Magee W.E. Amphotericin B in liposomes: a novel therapy for histoplasmosis. Am. Rev. Respir. Dis. 1982;125:610–611. doi: 10.1164/arrd.1982.125.5.610. [DOI] [PubMed] [Google Scholar]
  • 10.Sande M.A., Mandell G.L. Chemotherapy of microbial disease. In: Gilman A.G., Goodman L.S., Gilman A., editors. The Pharmacological Basis of Therapeutics. MacMillan; New York: 1980. pp. 1080–1205. [Google Scholar]
  • 11.Desiderio J.V., Campbell S.G. Liposome-encapsulated cephalothin in the treatment of experimental murine salmonellosis. J. Reticuloendoth. System. 1983;34:279–287. [PubMed] [Google Scholar]
  • 12.Alving C.R. Therapeutic potential of liposomes as drug carriers in leishmaniasis, malaria, and vaccines. In: Gregoriadis G., Senior J., Trouet A., editors. Targeting of Drugs. Plenum; New York: 1982. pp. 337–353. [Google Scholar]
  • 13.Mayhew E., Papahadjopoulos D. Therapeutic applications of liposomes. In: Ostro M.J., editor. Liposomes. Marcel Dekker; New York: 1983. pp. 289–341. [Google Scholar]
  • 14.Juliano R.L. Interactions of proteins and drugs with liposomes. In: Ostro M.J., editor. Liposomes. Marcel Dekker; New York: 1980. pp. 53–86. [Google Scholar]
  • 15.Kimelberg H.K., Mayhew E. Properties and biological effects of liposomes and their use in pharmacology and toxicology. Crit. Rev. Toxicol. 1978;6:25–79. [Google Scholar]
  • 16.Finkelstein M.C., Weissmann G. Targeting of liposomes. In: Knight C.A., editor. Liposomes: from Physical Structure to Therapeutic Applications. Elsevier; Amsterdam: 1981. pp. 443–464. [Google Scholar]
  • 17.Fidler I.J., Raz A. The induction of tumoricidal capacities in mouse and rat macrophages by lymphokines. Lymphokines. 1981;3:345–363. [Google Scholar]
  • 18.Poste G., Bucana C., Fidler I.J. Stimulation of host response against metastatic tumors by liposome-encapsulated immunomodulators. In: Gregoriadis G., Senior J., Trouet A., editors. Targeting of Drugs. Plenum; New York: 1982. pp. 261–284. [Google Scholar]
  • 19.Fidler I.J. Therapy of spontaneous metastases by intravenous injections of liposomes containing lymphokines. Science. 1980;208:1469–1471. doi: 10.1126/science.7384789. [DOI] [PubMed] [Google Scholar]
  • 20.Fidler I.J., Sone S., Fogler W.E., Barnes Z.L. Vol. 78. 1981. Eradication of spontaneous metastases and activation of alveolar macrophages by intravenous injection of liposomes containing muramyl dipeptide; pp. 1680–1684. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Schroit A.J., Hart I.R., Madsen J., Fidler I.J. Selective delivery of drugs encapsulated in liposomes: natural targeting to macrophages involved in various disease states. J. Biol. Resp. Med. 1983;2:97–100. [PubMed] [Google Scholar]
  • 22.Mims C.A. Aspects of the pathogenesis of virus disease. Bacteriol. Rev. 1964;28:30–71. doi: 10.1128/br.28.1.30-71.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Mogensen S.C. Role of macrophages in natural resistance to virus infections. Microbiol. Rev. 1979;43:1–26. doi: 10.1128/mr.43.1.1-26.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Allison A.C. On the role of mononuclear phagocytes in immunity against viruses. Prog. Med. Virol. 1974;18:15–31. [PubMed] [Google Scholar]
  • 25.Goldman R., Hogg N. Enhanced susceptibility of virus-infected fibroblasts to cytostasis mediated by peritoneal exudate cells. J. Immunol. 1978;121:1657–1663. [PubMed] [Google Scholar]
  • 26.Chapes S.K., Tompkins W.A.F. Cytotoxic macrophages induced in hamsters by vaccinia virus: selective cytotoxicity for virus-infected targets by macrophages collected late after immunization. J. Immunol. 1979;123:303–309. [PubMed] [Google Scholar]
  • 27.Koff W.C., Showalter S.D., Seniff D.A., Hampar B. Lysis of herpes virus infected cells by macrophages activated with free or liposome encapsulated lymphokine produced by a murine T cell hybridoma. Infect. Immun. 1983;42:1067–1072. doi: 10.1128/iai.42.3.1067-1072.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Kato N., Eggers H.J. Inhibition of uncoating of fowl plague virus by 1-adamantanamine hydrochloride. Virology. 1969;37:632–641. doi: 10.1016/0042-6822(69)90281-5. [DOI] [PubMed] [Google Scholar]
  • 29.Elion G.B., Furman P.A., Fyfe J.A., deMiranda P., Beuchamp L., Schaeffer H.J. Vol. 74. 1977. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine; pp. 5716–5720. (Proc. Natl. Acad. Sci. U.S.A.). [Google Scholar]
  • 30.Johnson R.T. Viral Infections of the Nervous System. Raven Press; New York: 1982. [Google Scholar]
  • 31.Notkins A.L. Interferon as a mediator of cellular immunity in viral infections. In: Notkins A.L., editor. Viral Immunology and Immunopathology. Academic Press; New York: 1975. pp. 149–166. [Google Scholar]
  • 32.Shillitoe E.J., Rapp F. Virus-induced cell surface antigens and cell-mediated immune responses. Springer Semin. Immunopathol. 1979;2:237–259. [Google Scholar]
  • 33.Letvin N.L., Kauffman R.S., Finberg R. An adherent cell lyses virus-infected targets: characterization, activation and fine specificity of the cytotoxic cell. 1982;129:2396–2401. [PubMed] [Google Scholar]
  • 34.Mak N.K., Leung K.N., Ada G.L. The generation of cytotoxic macrophages in mice during infection with influenza A or Sendai virus. Scand. J. Immunol. 1982;15:553–561. doi: 10.1111/j.1365-3083.1982.tb00683.x. [DOI] [PubMed] [Google Scholar]
  • 35.Sun C., Wyde P.R., Wilson S.Z., Knight V. Cell-mediated cytotoxic responses in lungs of cotton rats infected with respiratory syncytial virus. Am. Rev. Respir. Dis. 1983;127:460–464. doi: 10.1164/arrd.1983.127.4.460. [DOI] [PubMed] [Google Scholar]
  • 36.Lodmell D.L., Ewalt L.C. Enhanced resistance against encephalomyocarditis virus infection in mice, induced by a nonviable Mycobacterium tuberculosis oil-droplet vaccine. Infect. Immun. 1978;19:225–230. doi: 10.1128/iai.19.1.225-230.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Stohlman S.A., Woodward J.H., Frelinger J.A. Macrophage antiviral activity: extrinsic versus intrinsic activity. Infect. Immun. 1982;36:672–677. doi: 10.1128/iai.36.2.672-677.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Wildy P., Gell P.G.H., Rhodes J., Newton A. Inhibition of herpes simplex virus multiplication by activated macrophages: a role for arginase? Infect. Immun. 1982;37:40–45. doi: 10.1128/iai.37.1.40-45.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Morahan P.S., Morse S.S., McGeorge M.B. Macrophage extrinsic antiviral activity during herpes simplex virus infection. J. Gen. Virol. 1980;46:291–300. doi: 10.1099/0022-1317-46-2-291. [DOI] [PubMed] [Google Scholar]
  • 40.Rager-Zisman B., Kunkel M., Tanaka Y., Bloom B.R. Role of macrophage oxidative metabolism in resistance to vesicular stomatitis virus infection. Infect. Immun. 1982;36:1229–1237. doi: 10.1128/iai.36.3.1229-1237.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Morahan P.S., Glasgow L.A., Crane J.L., Jr., Kern E.R. Comparison of antiviral and antitumor activity of activated macrophages. Cell. Immunol. 1977;28:404–415. doi: 10.1016/0008-8749(77)90122-8. [DOI] [PubMed] [Google Scholar]
  • 42.Cohen D.A., Bubel H.C. Induction of resistance to ectromelia virus infection by Corynebacterium parvum in murine peritoneal macrophages. J. Reticuloendoth. System. 1983;33:35–46. [PubMed] [Google Scholar]
  • 43.Mims C.A., Gould J. The role of macrophages in mice infected with murine cytomegalovirus. J. Gen. Virol. 1978;41:143–152. doi: 10.1099/0022-1317-41-1-143. [DOI] [PubMed] [Google Scholar]
  • 44.Rodgers B.C., Mims C.A. Role of macrophage activation and interferon in the resistance of alveolar macrophage from infected mice to influenza virus. Infect. Immun. 1982;36:1154–1159. doi: 10.1128/iai.36.3.1154-1159.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Morahan P.S., Morse S.S. Macrophage-virus interactions. In: Pruffitt M.R., editor. Virus-Lymphocyte Interactions: Implications for Disease. Elsevier/North Holland; New York: 1979. pp. 17–35. [Google Scholar]
  • 46.Koff W.C., Fidler I.J., Showalter S.D., Chakrabarty M.K., Hampar B., Ceccorulli L.M., Kleinerman E.S. Human monocytes activated by immunomodulators in liposomes lyse herpes virus infected but not normal cells. Science. 1984;224:1007–1009. doi: 10.1126/science.6426057. [DOI] [PubMed] [Google Scholar]
  • 47.Kleinerman E.S., Erickson K.L., Schroit A.J., Fogler W.E., Fidler I.J. Activation of tumoricidal properties in human blood monocytes by liposomes containing lipohilic muramyl tripeptide. Cancer Res. 1980;43:2010–2014. [PubMed] [Google Scholar]
  • 48.Sone S., Fidler I.J. Synergistic activation by lymphokines and muramyl dipeptide of tumoricidal properties in rat alveolar macrophages. J. Immunol. 1980;125:2454–2460. [PubMed] [Google Scholar]
  • 49.Mogensen S. Role of macrophages in hepatitis induced by herpes simplex virus types 1 and 2 in mice. Infect. Immun. 1977;15:686–691. doi: 10.1128/iai.15.3.686-691.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Halstead S.B., O'Rourke E.J. Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J. Exp. Med. 1977;146:201–217. doi: 10.1084/jem.146.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Weiser W., Bang F.B. Macrophage genetically resistant to mouse hepatitis virus converted in vitro to susceptible macrophages. J. Exp. Med. 1976;143:690–695. doi: 10.1084/jem.143.3.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Johnson R.T. The pathogenesis of herpes virus encephalitis, II. A cellular basis for the development of resistance with age. J. Exp. Med. 1964;120:359–374. doi: 10.1084/jem.120.3.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Hirsch M.S., Zisman B., Allison A.C. Macrophages and age-dependent resistance to herpes simplex virus in mice. J. Immunol. 1970;104:1160–1165. [PubMed] [Google Scholar]
  • 54.Mintz L., Drew W.L., Hoo R., Finley T.N. Age-dependent resistance of human alveolar macrophages to herpes simplex virus. Infect. Immun. 1980;28:417–420. doi: 10.1128/iai.28.2.417-420.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Morahan P.S., Kern E.R., Glasgow L.A. Vol. 154. 1977. Immunomodulator induced resistance against herpes simplex virus; pp. 615–620. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  • 56.Zisman B., Hirsch M.S., Allison A.C. Selective effects of anti-macrophage serum, silica, and anti-lymphocyte serum or pathogenesis of herpes virus infection of young adult mice. J. Immunol. 1970;104:1155–1159. [PubMed] [Google Scholar]
  • 57.Carballal G., Cossio P.M., Laguens R.P., Penzinibio C., Oubina J.R., Meckert P.C., Rabinovich A., Arana R.M. Junin virus infection of guinea pigs: immunohistochemical and ultrastructural studies of hemopoietic tissue. J. Infect. Dis. 1981;143:7–14. doi: 10.1093/infdis/143.1.7. [DOI] [PubMed] [Google Scholar]
  • 58.Joseph B.S., Lampert P.W., Oldstone M.B.A. Replication and persistence of measles virus in defined subpopulations of human leukocytes. J. Virol. 1975;16:1638–1649. doi: 10.1128/jvi.16.6.1638-1649.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Edelman R., Wheelock E.F. Specific role of each human leukocyte type in viral infections. I. Monocytes as host cell for vesicular stomatitis virus replication in vitro. J. Virol. 1967;1:1139–1149. doi: 10.1128/jvi.1.6.1139-1149.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Halstead S.B., O'Rourke E.J., Allison A.C. Dengue viruses and mononuclear phagocytes II. Identity of blood and tissue leukocytes supporting in vitro infections. J. Exp. Med. 1977;146:218–229. doi: 10.1084/jem.146.1.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Wheelock E.F., Edelman R. Specific role of each human leukocyte type in viral infections. 17D yellow fever virus replication and interferon production in homogeneous leukocyte cultures treated with phytohemagglutininJ. Immunol. 1969;103:429–436. [PubMed] [Google Scholar]
  • 62.Daniels C.A., Kleinerman E.S., Snyderman R. Abortive and productive infections of human mononuclear phagocytes by type 1 herpes simplex virus. Am. J. Pathol. 1978;91:119–136. [PMC free article] [PubMed] [Google Scholar]
  • 63.Kirchner H. Immunobiology of infection with herpes simplex virus. Monographs Virol. 1982;13:1–104. [Google Scholar]
  • 64.Drew W.L., Mintz L., Hoo R., Finley T.N. Growth of herpes simplex and cytomegalovirus in cultures or human alveolar macrophages. Am. Rev. Respir. Dis. 1979;119:187–191. doi: 10.1164/arrd.1979.119.2.287. [DOI] [PubMed] [Google Scholar]
  • 65.Overall J.C., Jr. Dermatologic diseases. In: Galasso G.J., Merigan T.C., Buchanan R.A., editors. Antiviral Agents and Virus Diseases of Man. Raven Press; New York: 1979. pp. 305–384. [Google Scholar]
  • 66.Kende M., Schroit A.J., Rill W., Canonico P. Las Vegas; Nevada: 1983. Treatment of Rift Valley fever virus infected Swiss mice with liposome encapsulated muramyl dipeptide; p. 108. ICAAC Abstract. [Google Scholar]
  • 67.Appel M.J.G., Gibbs E.P.J., Martin S.J., Ter Meulen V., Rima B.K., Stephenson J.R., Taylor W.P. Morbillivirus disease of animals and man. In: Kurstak E., Kurstak C., editors. Vol. IV. Academic Press; New York: 1981. pp. 235–297. (Comparative Diagnosis of Viral Diseases). [Google Scholar]
  • 68.Levitt N.H., Miller H.V., Edelman R. Interaction of alphaviruses with human peripheral leukocytes: in vitro replication of Venezuelan equine encephalomyelitis virus monocyte cultures. Infect. Immun. 1979;24:642–646. doi: 10.1128/iai.24.3.642-646.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Monath T.P., Trent D.W. Togaviral diseases of domestic animals. In: Kurstak E., Kurstak C., editors. Vol. IV. Academic Press; New York: 1981. pp. 331–440. (Comparative Diagnosis of Viral Diseases). [Google Scholar]
  • 70.Coggins L. Equine infectious anemia. In: Kurstak E., Kurstak C., editors. Vol. IV. Academic Press; New York: 1981. pp. 647–658. (Comparative Diagnosis of Viral Diseases). [Google Scholar]
  • 71.Anderson L.W., Klevjer-Anderson P., Liggitt H.D. Susceptibility of blood derived monocytes and macrophages to caprine arthritis-encephalitis virus. Infect. Immun. 1983;44:837–840. doi: 10.1128/iai.41.2.837-840.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Kurstak E., Kurstak C. Comparative Diagnosis of Viral Diseases. Academic Press; New York: 1981. [Google Scholar]
  • 73.Anderson P., Vilcek J., Weissman G. Entrapment of human leukocyte interferon in the aqueous interstices of liposomes. Infect. Immun. 1981;31:1099–1103. doi: 10.1128/iai.31.3.1099-1103.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Hotta H., Hotta S. Dengue virus multiplication in cultures of mouse peritoneal macrophages: effects of macrophage activators. Microbiol. Immunol. 1982;26:665–676. doi: 10.1111/j.1348-0421.1982.tb00210.x. [DOI] [PubMed] [Google Scholar]
  • 75.Van der Groen G., Van den Berghe D.A.R., Pattyn S.R. Interaction of mouse peritoneal macrophages with different arboviruses in vitro. J. Gen. Virol. 1976;34:353–361. doi: 10.1099/0022-1317-34-2-353. [DOI] [PubMed] [Google Scholar]
  • 76.Lagwinska E., Stewart C.C., Adles C., Schlesinger S. Replication of lactic dehydrogenase virus and sindbis virus in mouse peritoneal macrophages. Induction of interferon and phenotypic mixingVirology. 1975;65:204–214. doi: 10.1016/0042-6822(75)90021-5. [DOI] [PubMed] [Google Scholar]
  • 77.Eustatia J.M., Maase E., Van Helden P., Veder Veen J. Viral replication in mouse macrophages. Arch. Ges. Virusforsch. 1972;39:376–380. doi: 10.1007/BF01241017. [DOI] [PubMed] [Google Scholar]
  • 78.Zinkernagel R., Althage A. Antiviral protection by virus-immune cytotoxic T cells: infected target cells are lysed before infectious virus progeny is assembled. J. Exp. Med. 1977;145:644–651. doi: 10.1084/jem.145.3.644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Alving C.R. Delivery of liposome-encapsulated drugs to macrophages. Pharmacol. Ther. 1983;22:407–424. doi: 10.1016/0163-7258(83)90010-4. [DOI] [PubMed] [Google Scholar]
  • 80.Cohn Z. The activation of mononuclear phagocytes: fact, fancy, future. J. Immunol. 1978;121:813–816. [PubMed] [Google Scholar]
  • 81.Karnovsky M.L., Lazdins J.K. Biochemical criteria for activated macrophages. J. Immunol. 1978;121:809–813. [PubMed] [Google Scholar]

Articles from Antiviral Research are provided here courtesy of Elsevier

RESOURCES