Abstract
The susceptibility of various species to methanol toxicity is inversely related to the rate of tetrahydrofolate (H4folate)-dependent formate oxidation to carbon dioxide. Thus, the levels of various folate derivatives and folate-dependent enzyme activities present in the livers of monkeys, which are sensitive to methanol, and rats, which are not, were compared in order to investigate the biochemical basis of this species difference. Hepatic H4folate levels in monkeys were 60% of those in rats, and formylated-H4folate derivatives were 2-fold higher in monkeys than in rats. No significant difference between monkeys and rats in the levels of total hepatic folate or 5-methyl-H4folate was observed. The activities of formyl-H4folate synthetase (EC 6.3.4.3) and formyl-H4folate dehydrogenase (EC 1.5.1.6) were 4- and 2-fold higher, respectively, in monkeys than in rats. There was no significant difference between monkeys and rats in methionine synthetase activity (EC 2.1.1.13). Dihydrofolate reductase activity (EC 1.5.1.3) in monkeys was 20% of that in rats. 5,10-Methylene-H4folate reductase (NADPH) activity (EC 1.1.1.171) in monkeys was 40% and 25% of that in rats when the rates of the forward and reverse reactions, respectively, were compared. Serine hydroxymethyltransferase activity (EC 2.1.2.1) was 2-fold higher in monkeys than in rats. The differences in the activities of methylene-H4folate reductase and serine hydroxymethyl-transferase between monkeys and rats may have contributed to the difference in hepatic H4folate levels. The 40% lower level of hepatic H4folate in monkeys, as compared to rats, relates well to the 50% lower maximal rate of formate oxidation in monkeys. Thus, the species difference in susceptibility to methanol may be explained by the difference in the level of hepatic H4folate.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Black K. A., Tephly T. R. Effects of nitrous oxide and methotrexate administration on hepatic methionine synthetase and dihydrofolate reductase activities, hepatic folates, and formate oxidation in rats. Mol Pharmacol. 1983 May;23(3):724–730. [PubMed] [Google Scholar]
- Clay K. L., Murphy R. C., Watkins W. D. Experimental methanol toxicity in the primate: analysis of metabolic acidosis. Toxicol Appl Pharmacol. 1975 Oct;34(1):49–61. doi: 10.1016/0041-008x(75)90174-x. [DOI] [PubMed] [Google Scholar]
- Daubner S. C., Matthews R. G. Purification and properties of methylenetetrahydrofolate reductase from pig liver. J Biol Chem. 1982 Jan 10;257(1):140–145. [PubMed] [Google Scholar]
- Eells J. T., Black K. A., Makar A. B., Tedford C. E., Tephly T. R. The regulation of one-carbon oxidation in the rat by nitrous oxide and methionine. Arch Biochem Biophys. 1982 Dec;219(2):316–326. doi: 10.1016/0003-9861(82)90162-x. [DOI] [PubMed] [Google Scholar]
- Eells J. T., Black K. A., Tedford C. E., Tephly T. R. Methanol toxicity in the monkey: effects of nitrous oxide and methionine. J Pharmacol Exp Ther. 1983 Nov;227(2):349–353. [PubMed] [Google Scholar]
- Eells J. T., Makar A. B., Noker P. E., Tephly T. R. Methanol poisoning and formate oxidation in nitrous oxide-treated rats. J Pharmacol Exp Ther. 1981 Apr;217(1):57–61. [PubMed] [Google Scholar]
- Krebs H. A., Hems R., Tyler B. The regulation of folate and methionine metabolism. Biochem J. 1976 Aug 15;158(2):341–353. doi: 10.1042/bj1580341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kutzbach C., Stokstad E. L. Mammalian methylenetetrahydrofolate reductase. Partial purification, properties, and inhibition by S-adenosylmethionine. Biochim Biophys Acta. 1971 Dec 15;250(3):459–477. doi: 10.1016/0005-2744(71)90247-6. [DOI] [PubMed] [Google Scholar]
- Kutzbach C., Stokstad E. L. Partial purification of a 10-formyl-tetrahydrofolate: NADP oxidoreductase from mammalian liver. Biochem Biophys Res Commun. 1968 Jan 25;30(2):111–117. doi: 10.1016/0006-291x(68)90456-7. [DOI] [PubMed] [Google Scholar]
- MALEY F., MALEY G. F. Nucleotide interconversions. II. Elevation of deoxycytidylate deaminase and thymidylate synthetase in regenerating rat liver. J Biol Chem. 1960 Oct;235:2968–2970. [PubMed] [Google Scholar]
- Makar A. B., Tephly T. R. Methanol poisoning in the folate-deficient rat. Nature. 1976 Jun 24;261(5562):715–716. doi: 10.1038/261715a0. [DOI] [PubMed] [Google Scholar]
- Martin-Amat G., McMartin K. E., Hayreh S. S., Hayreh M. S., Tephly T. R. Methanol poisoning: ocular toxicity produced by formate. Toxicol Appl Pharmacol. 1978 Jul;45(1):201–208. doi: 10.1016/0041-008x(78)90040-6. [DOI] [PubMed] [Google Scholar]
- McGuire J. J., Bertino J. R. Enzymatic synthesis and function of folylpolyglutamates. Mol Cell Biochem. 1981 Aug 11;38(Spec No)(Pt 1):19–48. doi: 10.1007/BF00235686. [DOI] [PubMed] [Google Scholar]
- McMartin K. E., Ambre J. J., Tephly T. R. Methanol poisoning in human subjects. Role for formic acid accumulation in the metabolic acidosis. Am J Med. 1980 Mar;68(3):414–418. doi: 10.1016/0002-9343(80)90113-8. [DOI] [PubMed] [Google Scholar]
- McMartin K. E., Makar A. B., Martin G., Palese M., Tephly T. R. Methanol poisoning. I. The role of formic acid in the development of metabolic acidosis in the monkey and the reversal by 4-methylpyrazole. Biochem Med. 1975 Aug;13(4):319–333. doi: 10.1016/0006-2944(75)90171-4. [DOI] [PubMed] [Google Scholar]
- McMartin K. E., Martin-Amat G., Makar A. B., Tephly T. R. Methanol poisoning. V. Role of formate metabolism in the monkey. J Pharmacol Exp Ther. 1977 Jun;201(3):564–572. [PubMed] [Google Scholar]
- McMartin K. E., Martin-Amat G., Noker P. E., Tephly T. R. Lack of a role for formaldehyde in methanol poisoning in the monkey. Biochem Pharmacol. 1979 Mar 1;28(5):645–649. doi: 10.1016/0006-2952(79)90149-7. [DOI] [PubMed] [Google Scholar]
- McMartin K. E., Virayotha V., Tephly T. R. High-pressure liquid chromatography separation and determination of rat liver folates. Arch Biochem Biophys. 1981 Jun;209(1):127–136. doi: 10.1016/0003-9861(81)90264-2. [DOI] [PubMed] [Google Scholar]
- Nakano Y., Fujioka M., Wada H. Studies on serine hydroxymethylase isoenzymes from rat liver. Biochim Biophys Acta. 1968 Apr 24;159(1):19–26. doi: 10.1016/0005-2744(68)90240-4. [DOI] [PubMed] [Google Scholar]
- Noker P. E., Eells J. T., Tephly T. R. Methanol toxicity: treatment with folic acid and 5-formyl tetrahydrofolic acid. Alcohol Clin Exp Res. 1980 Oct;4(4):378–383. doi: 10.1111/j.1530-0277.1980.tb04835.x. [DOI] [PubMed] [Google Scholar]
- Palese M., Tephly T. R. Metabolism of formate in the rat. J Toxicol Environ Health. 1975 Sep;1(1):13–24. doi: 10.1080/15287397509529305. [DOI] [PubMed] [Google Scholar]
- Paukert J. L., Straus L. D., Rabinowitz J. C. Formyl-methyl-methylenetetrahydrofolate synthetase-(combined). An ovine protein with multiple catalytic activities. J Biol Chem. 1976 Aug 25;251(16):5104–5111. [PubMed] [Google Scholar]
- Priest D. G., Happel K. K., Mangum M., Bednarek J. M., Doig M. T., Baugh C. M. Tissue folylpolyglutamate chain-length characterization by electrophoresis as thymidylate synthetase-fluorodeoxyuridylate ternary complexes. Anal Biochem. 1981 Jul 15;115(1):163–169. doi: 10.1016/0003-2697(81)90540-6. [DOI] [PubMed] [Google Scholar]
- ROE O. The metabolism and toxicity of methanol. Pharmacol Rev. 1955 Sep;7(3):399–412. [PubMed] [Google Scholar]
- Rosenblatt D. S., Cooper B. A., Lue-Shing S., Wong P. W., Berlow S., Narisawa K., Baumgartner R. Folate distribution in cultured human cells. Studies on 5,10-CH2-H4PteGlu reductase deficiency. J Clin Invest. 1979 May;63(5):1019–1025. doi: 10.1172/JCI109370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Röe O. Species differences in methanol poisoning. Crit Rev Toxicol. 1982 Oct;10(4):275–286. doi: 10.3109/10408448209003368. [DOI] [PubMed] [Google Scholar]
- Scanlon K. J., Cashmore A. R., Moroson B. A., Dreyer R. N., Bertino J. R. Inhibition of serine metabolism by tetrahydrohomofolate in L1210 mouse leukemia cells. Mol Pharmacol. 1981 May;19(3):481–490. [PubMed] [Google Scholar]
- Scrimgeour K. G. Methods for reduction, stabilization, and analyses of folates. Methods Enzymol. 1980;66:517–523. doi: 10.1016/0076-6879(80)66496-9. [DOI] [PubMed] [Google Scholar]
- Sejersted O. M., Jacobsen D., Ovrebø S., Jansen H. Formate concentrations in plasma from patients poisoned with methanol. Acta Med Scand. 1983;213(2):105–110. doi: 10.1111/j.0954-6820.1983.tb03699.x. [DOI] [PubMed] [Google Scholar]
- Shane B., Stokstad E. L. The interrelationships among folate, vitamin B12, and methionine metabolism. Adv Nutr Res. 1983;5:133–170. doi: 10.1007/978-1-4613-9937-7_7. [DOI] [PubMed] [Google Scholar]
- Smith R. M., Osborne-White W. S., Gawthorne J. M. Folic acid metabolism in vitamin B12-deficient sheep. Effects of injected methionine on liver constituents associated with folate metabolism. Biochem J. 1974 Jul;142(1):105–117. doi: 10.1042/bj1420105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thorndike J., Pelliniemi T. T., Beck W. S. Serine hydroxymethyltransferase activity and serine incorporation in leukocytes. Cancer Res. 1979 Sep;39(9):3435–3440. [PubMed] [Google Scholar]
- Wang F. K., Koch J., Stokstad E. L. Folate coenzyme pattern, folate linked enzymes and methionine biosynthesis in rat liver mitochondria. Biochem Z. 1967 Jan 27;346(5):458–466. [PubMed] [Google Scholar]