Abstract
A facile synthesis of 7-amino-5-chloro-3-beta-D-ribofuranosylpyrazolo [4,3-d]pyrimidine (5-chloroformycin A, 6), 7-amino-5-chloro-3-(2-deoxy-beta-D-erythro-pentofuranosyl) pyrazolo [4,3-d]-pyrimidine (5-chloro-2'-deoxyformycin A, 13) and certain related 5,7-disubstituted pyrazolo[4,3-d]pyrimidine ribonucleosides is described starting with formycin A. Thiation of tri-O-acetyloxoformycin B (4b) with phosphorus pentasulfide, followed 3-beta-D-ribofuranosyl-7-thioxopyrazolo[4,3-d] pyrimidin-5(1H,4H,6H)-one (3b) in excellent yield. Chlorination of 4b with either phosphorus oxychloride or phenyl phosphonicdichloride furnished the key intermediate 5,7-dichloro-3-(2,3, 5-tri-O-acetyl-beta-D-ribofuranosyl)pyrazolo[4,3-d]pyrimidine (5a), which on deacetylation afforded 5,7-dichloro-3-beta-D-ribofuranosylpyrazolo [4,3-d]pyrimidine (5b). Ammonolysis of 5a with liquid ammonia gave 6, whereas with MeOH/NH3, a mixture of 6 and 7-methoxy-5-chloro-3-beta-D-ribofuranosylpyrazolo[4,3-d]pyrimidine (7) was obtained. Reaction of 6 with lithium azide and subsequent hydrogenation afforded 5-aminoformycin A (10). Treatment of 5a with thiourea gave 5-chloro-3-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl) pyrazolo[4,3-d]pyrimidine-7(1H,6H)-thione (8a), which on further reaction with sodium hydrosulfide furnished 3-beta-D-ribofuranosylpyrazolo [4,3-d]pyrimidine-5,7(1H,4H,6H)-dithione (11). The four-step deoxygenation procedure using phenoxythiocarbonylation of the 2'-hydroxy group of the 3', 5'-protected 6 gave 5-chloro-2'-deoxyformycin A (13).
Full text
PDF

















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acton E. M., Fujiwara A. N., Goodman L., Henry D. W. Synthetic C-nucleosides: 3-(alpha- and beta-D-arabinofuranosyl)pyrazolo(4,3-d)pyrimidine-5,7-diones. Carbohydr Res. 1974 Mar;33(1):135–151. doi: 10.1016/s0008-6215(00)82947-x. [DOI] [PubMed] [Google Scholar]
- Berman J. D., Lee L. S., Robins R. K., Revankar G. R. Activity of purine analogs against Leishmania tropica within human macrophages in vitro. Antimicrob Agents Chemother. 1983 Aug;24(2):233–236. doi: 10.1128/aac.24.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berman J. D., Rainey P., Santi D. V. Metabolism of formycin B by Leishmania amastigotes in vitro. Comparative metabolism in infected and uninfected human macrophages. J Exp Med. 1983 Jul 1;158(1):252–257. doi: 10.1084/jem.158.1.252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carson D. A., Wasson D. B., Kaye J., Ullman B., Martin D. W., Jr, Robins R. K., Montgomery J. A. Deoxycytidine kinase-mediated toxicity of deoxyadenosine analogs toward malignant human lymphoblasts in vitro and toward murine L1210 leukemia in vivo. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6865–6869. doi: 10.1073/pnas.77.11.6865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giziewicz J., De Clercq E., Luczak M., Shugar D. Antiviral and antimetabolic activities of formycin and its N1-, N2-, 2'-O- and 3'-O-methylated derivatives. Biochem Pharmacol. 1975 Oct 1;24(19):1813–1817. doi: 10.1016/0006-2952(75)90462-1. [DOI] [PubMed] [Google Scholar]
- Goebel R. J., Adams A. D., McKernan P. A., Murray B. K., Robins R. K., Revankar G. R., Canonico P. G. Synthesis and antiviral activity of certain carbamoylpyrrolopyrimidine and pyrazolopyrimidine nucleosides. J Med Chem. 1982 Nov;25(11):1334–1338. doi: 10.1021/jm00353a012. [DOI] [PubMed] [Google Scholar]
- HORI M., TAKITA T., KOYAMA G., TADEUCHI T., UMEZAWA H. A NEW ANTIBIOTIC, FORMYCIN. J Antibiot (Tokyo) 1964 May;17:96–99. [PubMed] [Google Scholar]
- Hidaka T., Katayama K., Yamashita K., Yamashita T., Watanabe K., Shimazaki M., Ohno M., Takeuchi T., Umezawa H. Effects of a new adenosine deaminase inhibitor, isocoformycin, on toxicity, antitumor activity and tissue distribution of formycin A and 9-beta-D-arabinofuranosyladenine. J Antibiot (Tokyo) 1980 Mar;33(3):303–309. doi: 10.7164/antibiotics.33.303. [DOI] [PubMed] [Google Scholar]
- Huynh-Dinh T., Kolb A., Gouyette C., Igolen J. Synthesis of C nucleosides X. Structural analogs of formycin B. J Org Chem. 1975 Sep 19;40(19):2825–2830. doi: 10.1021/jo00907a027. [DOI] [PubMed] [Google Scholar]
- Ishida N., Homma M., Kumagai K., Shimizu Y., Matsumoto S. Studies on the antiviral activity of formycin. J Antibiot (Tokyo) 1967 Jan;20(1):49–52. [PubMed] [Google Scholar]
- Ishizuka M., Sawa T., Koyama G., Takahashi T., Umezawa H. Metabolism of formycin and formycin B in vitro. J Antibiot (Tokyo) 1968 Jan;21(1):1–4. doi: 10.7164/antibiotics.21.1. [DOI] [PubMed] [Google Scholar]
- Koyama G., Maeda K., Umezawa H., Iitaka Y. The structural studies of formycin and formycin B. Tetrahedron Lett. 1966 Feb;6:597–602. doi: 10.1016/s0040-4039(01)99671-6. [DOI] [PubMed] [Google Scholar]
- Koyama G., Umezawa H. Formycin B and its relation to formycin. J Antibiot (Tokyo) 1965 Jul;18(4):175–177. [PubMed] [Google Scholar]
- Long R. A., Lewis A. F., Robins R. K., Townsend L. B. Pyrazolopyrimidine nucleosides. Part II. 7-Substituted 3- -D-ribofuranosylpyrasolo(4,3-d)pyrimidines related to and derived from the nucleoside antibiotics formycin and formycin B. J Chem Soc Perkin 1. 1971;13:2443–2446. doi: 10.1039/j39710002443. [DOI] [PubMed] [Google Scholar]
- Long R. A., Robins R. K., Townsend L. B. Purine nucleosides. XV. The synthesis of 8-aminoand 8-substituted aminopurine nucleosides. J Org Chem. 1967 Sep;32(9):2751–2756. doi: 10.1021/jo01284a024. [DOI] [PubMed] [Google Scholar]
- Makabe O., Miyadera A., Kinoshita M., Umezawa S. Cyclic phosphates of formycin. J Antibiot (Tokyo) 1978 May;31(5):456–467. doi: 10.7164/antibiotics.31.456. [DOI] [PubMed] [Google Scholar]
- Miura K., Ueda T. Nucleosides and nucleotides. XIII. Synthesis of thiopurine nucleosides from adenosine and guanosine derivatives by the sulfhydrolysis. Chem Pharm Bull (Tokyo) 1975 Sep;23(9):2064–2069. doi: 10.1248/cpb.23.2064. [DOI] [PubMed] [Google Scholar]
- Montgomery J. A. Has the well gone dry? The First Cain Memorial Award Lecture. Cancer Res. 1982 Oct;42(10):3911–3917. [PubMed] [Google Scholar]
- Nelson D. J., Lafon S. W., Jones T. E., Spector T., Berens R. L., Marr J. J. The metabolism of formycin B in Leishmania donovani. Biochem Biophys Res Commun. 1982 Sep 16;108(1):349–354. doi: 10.1016/0006-291x(82)91873-3. [DOI] [PubMed] [Google Scholar]
- Rainey P., Garrett C. E., Santi D. V. The metabolism and cytotoxic effects of Formycin B in Trypanosoma cruzi. Biochem Pharmacol. 1983 Feb 15;32(4):749–752. doi: 10.1016/0006-2952(83)90511-7. [DOI] [PubMed] [Google Scholar]
- Rainey P., Santi D. V. Metabolism and mechanism of action of formycin B in Leishmania. Proc Natl Acad Sci U S A. 1983 Jan;80(1):288–292. doi: 10.1073/pnas.80.1.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robins M. J., Naik S. R., Lee A. S. Nucleic acid related compounds. 12. The facile and high-yield stannous chloride catalyzed monomethylation of the cis-glycol system of nucleosides by diazomethane. J Org Chem. 1974 Jun 28;39(13):1891–1899. doi: 10.1021/jo00927a022. [DOI] [PubMed] [Google Scholar]
- Robins M. J., Robins R. K. Purine nucleosides. XI. The synthesis of 2'-deoxy-9-alpha- and-beta-D-ribofuranosylpurines and the correlation of their anomeric structure with proton magnetic resonance spectra. J Am Chem Soc. 1965 Nov 5;87(21):4934–4940. doi: 10.1021/ja00949a042. [DOI] [PubMed] [Google Scholar]
- Rosowsky A., Solan V. C., Gudas L. J. Improved synthesis of 2'-deoxyformycin A and studies of its in vitro activity against mouse lymphoma of T-cell origin. J Med Chem. 1985 Aug;28(8):1096–1099. doi: 10.1021/jm00146a020. [DOI] [PubMed] [Google Scholar]
- Schneller S. W., Thompson R. D., Cory J. G., Olsson R. A., De Clercq E., Kim I. K., Chiang P. K. Biological activity and a modified synthesis of 8-amino-3-beta-D-ribofuranosyl-1,2,4-triazolo[4,3-a]pyrazine, an isomer of formycin. J Med Chem. 1984 Jul;27(7):924–928. doi: 10.1021/jm00373a020. [DOI] [PubMed] [Google Scholar]
- Secrist J. A., 3rd, Shortnacy A. T., Montgomery J. A. 2-Fluoroformycin and 2-aminoformycin. Synthesis and biological activity. J Med Chem. 1985 Nov;28(11):1740–1742. doi: 10.1021/jm00149a033. [DOI] [PubMed] [Google Scholar]
- Sheen M. R., Martin H. F., Parks R. E., Jr The interaction of the nucleoside analogues, formycins A and B, with xanthine oxidase and hepatic aldehyde oxidase. Mol Pharmacol. 1970 May;6(3):255–265. [PubMed] [Google Scholar]
- Spector T., Jones T. E., LaFon S. W., Nelson D. J., Berens R. L., Marr J. J. Monophosphates of formycin B and allopurinol riboside. Interactions with leishmanial and mammalian succino-AMP synthetase and GMP reductase. Biochem Pharmacol. 1984 May 15;33(10):1611–1617. doi: 10.1016/0006-2952(84)90282-x. [DOI] [PubMed] [Google Scholar]
- Townsend L. B., Long R. A., McGraw J. P., Miles D. W., Robins R. K., Eyring H. Pyrazolopyrimidine nucleosides. V. Methylation of the C-nucleoside antibiotic formycin and structural elucidation of products by magnetic circular dichroism spectroscopy. J Org Chem. 1974 Jul 12;39(14):2023–2027. doi: 10.1021/jo00928a009. [DOI] [PubMed] [Google Scholar]
- Zemlicks J. Formycin anhydronucleosides. Conformation of formycin and conformational specificity of adenosine deaminase. J Am Chem Soc. 1975 Oct 1;97(20):5896–5903. doi: 10.1021/ja00853a041. [DOI] [PubMed] [Google Scholar]