Skip to main content
PLOS One logoLink to PLOS One
. 2024 Dec 17;19(12):e0316132. doi: 10.1371/journal.pone.0316132

Correction: Using machine learning to understand age and gender classification based on infant temperament

Maria A Gartstein, D Erich Seamon, Jennifer A Mattera, Michelle Bosquet Enlow, Rosalind J Wright, Koraly Perez-Edgar, Kristin A Buss, Vanessa LoBue, Martha Ann Bell, Sherryl H Goodman, Susan Spieker, David J Bridgett, Amy L Salisbury, Megan R Gunnar, Shanna B Mliner, Maria Muzik, Cynthia A Stifter, Elizabeth M Planalp, Samuel A Mehr, Elizabeth S Spelke, Angela F Lukowski, Ashley M Groh, Diane M Lickenbrock, Rebecca Santelli, Tina Du Rocher Schudlich, Stephanie Anzman-Frasca, Catherine Thrasher, Anjolii Diaz, Carolyn Dayton, Kameron J Moding, Evan M Jordan
PMCID: PMC11651555  PMID: 39689087

The second author’s name is spelled incorrectly. The correct name is: Erich Seamon. The correct citation is: Gartstein MA, Seamon E, Mattera JA, Bosquet Enlow M, Wright RJ, Perez-Edgar K, et al. (2022) Using machine learning to understand age and gender classification based on infant temperament. PLOS ONE 17(4): e0266026. https://doi.org/10.1371/journal.pone.0266026

There is an error in affiliation 2 for author Erich Seamon. The correct affiliation 2 is: Institute for Modeling, Collaboration, and Innovation, University of Idaho, Moscow, Idaho, USA.

Reference

  • 1.Gartstein MA, Seamon DE, Mattera JA, Bosquet Enlow M, Wright RJ, Perez-Edgar K, et al. (2022) Using machine learning to understand age and gender classification based on infant temperament. PLOS ONE 17(4): e0266026. 10.1371/journal.pone.0266026 [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from PLOS ONE are provided here courtesy of PLOS

RESOURCES