Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2025 Feb 17:2025.02.13.638189. [Version 1] doi: 10.1101/2025.02.13.638189

Dendritic cells activate pyroptosis and effector-triggered apoptosis to restrict Legionella infection

Víctor R Vázquez Marrero, Jessica Doerner, Kimberly A Wodzanowski, Jenna Zhang, Allyson Lu, Frankie D Boyer, Isabel Vargas, Suzana Hossain, Karly B Kammann, Madison V Dresler, Sunny Shin
PMCID: PMC11870440  PMID: 40027713

Abstract

The innate immune system relies on pattern recognition receptors (PRRs) to detect pathogen-associated molecular patterns (PAMPs) and guard proteins to monitor pathogen disruption of host cell processes. How different immune cell types engage PRR- and guard protein-dependent defenses in response to infection is poorly understood. Here, we show that macrophages and dendritic cells (DCs) respond in distinct ways to bacterial virulence activities. In macrophages, the bacterial pathogen Legionella pneumophila deploys its Dot/Icm type IV secretion system (T4SS) to deliver effector proteins that facilitate its robust intracellular replication. In contrast, T4SS activity triggers rapid DC death that potently restricts Legionella replication within this cell type. Intriguingly, we found that infected DCs exhibit considerable heterogeneity at the single cell level. Initially, a subset of DCs activate caspase-11 and NLRP3 inflammasome-dependent pyroptosis and release IL-1 β early during infection. At later timepoints, a separate DC population undergoes apoptosis driven by T4SS effectors that block host protein synthesis, thereby depleting the levels of the pro-survival proteins Mcl-1 and cFLIP. Together, pyroptosis and effector-triggered apoptosis robustly restrict Legionella replication in DCs. Collectively, our work suggests a model where Mcl-1 and cFLIP guard host translation in DCs, and that macrophages and DCs distinctly employ innate immune sensors and guard proteins to mount divergent responses to Legionella infection.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES