Skip to main content
Journal of Zhejiang University (Medical Sciences) logoLink to Journal of Zhejiang University (Medical Sciences)
. 2025 Mar 13;54(2):154–160. [Article in Chinese] doi: 10.3724/zdxbyxb-2024-0391

动脉血压升高影响经导管主动脉瓣置换术后生物瓣钙化及衰败机制

Impact of elevated arterial blood pressure on bioprosthetic valve calcification and failure after transcatheter aortic valve replacement

SHENG Wenjing 1,3, ZHU Qifeng 1,2,3, DAI Hanyi 1, ZHOU Dao 1, LIU Xianbao 1,2,3,✉,
Editors: 沈 敏, 刘 丽娜
PMCID: PMC12062944  PMID: 40104902

Abstract

经导管主动脉瓣置换术(TAVR)已成为治疗重度主动脉瓣狭窄的标准方法,并在中、低危患者中取得了与传统手术相当的疗效。然而,TAVR所用生物瓣使用寿命有限,术后可能发生钙化、撕裂或感染等生物瓣衰败并发症,后者与患者不良预后密切相关。动脉血压升高是主动脉瓣钙化和生物瓣衰败的重要因素。高血压通过增加瓣膜机械应力、激活肾素-血管紧张素系统和促进血栓形成等机制可能加速钙化进程并加重生物瓣衰败。此外,动脉血压升高还与人工瓣膜-患者不匹配和瓣周漏等并发症相互作用,共同影响瓣膜耐久性。本文探讨了动脉血压升高影响TAVR后生物瓣钙化及衰败的机制,强调控制血压、优化术前评估和选择合适瓣膜类型在减少生物瓣衰败中的重要性,以期为临床实践提供指导。

Keywords: 生物瓣钙化, 生物瓣衰败, 经导管主动脉瓣置换术, 动脉血压升高, 综述


TAVR作为一种微创治疗方式,已广泛应用于无法接受外科手术的高危患者,且在中低危患者中,其疗效与传统的外科主动脉瓣置换术相当1-4。然而,TAVR使用的生物瓣寿命有限,在术后中长期内可能发生瓣膜钙化、撕裂或感染等不良事件,称为生物瓣衰败,后者与患者的不良预后密切相关5-7。目前,TAVR后生物瓣衰败的发生率及其预后的报道仍相对缺乏,主流的临床大型随机对照研究和队列研究等均未提供超过10年的随访结果8-14。随着TAVR逐步应用于年轻和外科手术低危患者,生物瓣的耐久性问题愈显重要。

已有研究表明,动脉血压升高不仅可能加速原生主动脉瓣狭窄病变的发生,还可能通过加速钙化过程进一步影响TAVR后生物瓣的结构和功能,是导致主动脉瓣钙化的重要因素之一15-17。尽管动脉血压升高与主动脉瓣病变的关系已有较多报道,但其对TAVR后生物瓣钙化及衰败的具体影响仍未完全明确5。基于生物瓣与原生瓣膜在结构和功能上具有高度相似性,本文将结合既往研究,探讨动脉血压升高在TAVR后生物瓣钙化中的潜在作用及其对生物瓣耐久性的影响。

1. 生物瓣钙化的发生发展与动脉血压升高存在密切关联

主动脉瓣钙化密度在原发性主动脉瓣狭窄诊断和预后中的价值已得到充分验证,并被纳入欧洲心脏病学会指南,用于评估超声心动图诊断不一致患者的疾病严重程度418。研究显示,主动脉瓣钙化密度是主动脉瓣狭窄血流动力学严重程度、进展和结局的有力预测因子19。目前,已有证据表明,主动脉瓣钙化密度与跨瓣压差进展之间存在一定相关性20,并且主动脉瓣钙化密度的基线水平与术后生物瓣功能紊乱独立相关19。此外,主动脉瓣生物瓣叶钙化与死亡风险增加或需要再次干预的风险增加密切相关,其预测患者预后能力较好21

主动脉瓣钙化的机制较为复杂。研究表明,高钙血症、高磷血症及瓣叶机械应力的增加是导致瓣叶组织矿化、增厚和破坏的主要因素,因此很多可能导致磷钙代谢紊乱(如肾功能衰竭、甲状旁腺功能亢进)或瓣叶机械应力增加(如动脉血压升高、PPM)的疾病或状况都可能加速瓣膜钙化81522-23。此外,动脉血压升高也是影响瓣膜置换后患者预后的独立因素16。因此,动脉血压升高与TAVR后生物瓣钙化之间可能存在密切的相互作用,具有重要的临床意义和研究价值。

2. 动脉血压升高增加瓣叶机械应力从而促进生物瓣钙化

大部分研究认为,动脉血压升高主要在生物瓣钙化的初期阶段发挥作用,且与生物瓣钙化率升高及主动脉瓣狭窄相关,但持续的动脉血压升高是否会进一步加重瓣膜钙化尚不明确1924-25。动脉血压升高可能会增加收缩期瓣叶上的机械应力,尤其是弯曲应力,导致瓣叶过度拉伸;同时,高流量引发的湍流可能增加剪切应力,进而引起内皮损伤。这些损伤可能通过激活肌成纤维细胞的活化、脂质和炎症细胞的浸润等一系列生物学过程,最终促进生物瓣钙化和狭窄,甚至导致生物瓣衰败26

在生物瓣钙化过程中,施加在生物瓣上的机械应力和血流动力学冲刷力也可能发挥重要作用27。机械应力可造成生物瓣组织结构的破坏,产生微裂缝,暴露出易钙化的区域。与天然心瓣膜不同,生物瓣缺乏自我修复能力,任何损伤都是不可逆的。研究表明,钙化主要发生在受力最大的区域527。而TAVR所特有的可能导致机械应力增加的与生物瓣和操作相关的因素包括PPM、生物瓣膨胀不全、瓣叶较薄、植入前瓣叶卷曲和术中球囊扩张等。此外,高血压和高体重指数也是已知的风险因素28-29。因此,动脉血压升高可能通过增加生物瓣机械应力直接参与生物瓣钙化的发生。

而在生物瓣制备过程中,为避免免疫排斥,通常采用戊二醛交联并覆盖生物瓣表面的抗原。但这种戊二醛固定处理会使生物瓣表面形成游离的醛基,醛基与患者血液中的钙离子和磷脂发生反应,导致生物瓣表面发生慢性钙化30-31。高钙血症、高磷血症和增加的瓣叶机械张力会加速矿物质在生物瓣上的沉积,导致瓣叶增厚,损害瓣叶功能。尽管使用戊二醛进行固定处理可降低免疫原性,但生物瓣仍存在低程度的免疫原性,残留的动物异体抗原仍能引起免疫反应导致组织纤维化、钙化32-33。与天然心瓣膜相似,生物瓣也可能发生类似于动脉粥样硬化致病过程中脂质介导的炎症,进一步导致胶原纤维破坏和钙化变性34。而上述生物瓣钙化机制均受机械应力损伤的影响,因此在动脉血压升高的患者中,生物瓣的瓣叶机械应力可出现不同程度地增大,可能通过暴露表面抗原、产生裂隙等途径间接促进生物瓣钙化和变性。

3. 动脉血压升高与肾素-血管紧张素系统平衡紊乱是影响生物瓣钙化病程的潜在因素

RAS在维持动态血压稳定中发挥重要作用。RAS失衡与心血管组织重塑、电解质紊乱和体液潴留密切相关,进而导致血压升高;反过来,动脉血压升高也是RAS失衡的主要因素之一,两者相互作用、紧密交织。近年来,RAS在瓣膜钙化、主动脉瓣狭窄进展及患者预后中的作用已得到越来越多的关注。研究表明,血管紧张素Ⅱ可能通过促进主动脉瓣组织的纤维化、重塑和钙化来推动瓣膜病变发生和进展35-38。在小鼠模型中,血管紧张素Ⅱ可显著导致主动脉瓣增厚39;在高胆固醇血症兔模型中,血管紧张素受体拮抗剂奥美沙坦可有效预防主动脉瓣的矿化和纤维化,且在人钙化主动脉瓣中血管紧张素转换酶与血管紧张素Ⅱ存在共定位现象40。研究发现,在一些合并有动脉血压升高的重度症状性主动脉瓣狭窄患者中,血管紧张素Ⅱ水平与原生主动脉瓣的炎症及纤维钙化重塑正相关3436。进一步研究发现,对于接受血管紧张素受体拮抗剂治疗的患者,移除钙化瓣膜的炎症反应和重塑程度较低41-42。这些发现促使学者们关注血管紧张素转换酶拮抗剂或血管紧张素受体拮抗剂在非手术干预主动脉瓣病变中的潜力。目前,已有初步证据表明,这些药物可能改善主动脉瓣狭窄患者的预后43,但需要更广泛样本量临床试验证明。

因此,动脉血压升高不仅能通过高血流动力学增加施加在主动脉瓣上的重复机械应力,还可能通过激活RAS加速瓣膜的纤维化、钙化、狭窄的进展,并加速心室和动脉结构及功能的恶化43。生物瓣具有与原生主动脉瓣类似的解剖结构、血流动力学机制、生物学性质,因此动脉血压升高与RAS的平衡紊乱是TAVR后生物瓣钙化及衰败的潜在病理生理因素。未来,需要进行更多的细胞分子机制研究及临床试验验证,以深入探讨动脉血压升高与RAS失衡在TAVR后生物瓣钙化中的具体作用。

4. 动脉血压升高增加瓣叶血栓形成风险导致生物瓣钙化

TAVR后瓣叶血栓的形成不仅与血栓栓塞事件(如神经系统事件)相关,也与生物瓣功能紊乱密切相关,是生物瓣钙化和生物瓣衰败发生发展的另一重要因素。瓣叶上形成血栓会导致瓣膜小叶运动受限,损害生物瓣的正常开启和关闭。而长时间的瓣叶静止不动和异常应力可能导致组织损伤,进一步加重生物瓣结构的恶化;再者,血栓的形成和溶解过程会导致瓣叶负荷变化,产生额外的机械应力,并且还会引发炎症反应,进而促进生物瓣钙化发生544。血流瘀滞和血流动力学紊乱的生物瓣区域血栓形成、组织过度生长和钙化会进一步加速45。而动脉血压升高是一种系统性的血流动力学紊乱,可造成更高的剪切应力,而高剪切应力会导致生物瓣内皮细胞和间质损害、血细胞损伤及血小板活化,损伤的内皮细胞和血细胞加速黏附,进一步引发凝血酶生成和补体激活,破坏正常的血栓防御机制46。故动脉血压升高可能是瓣叶血栓形成的一个重要危险因素。有临床研究证实,在TAVR后患者中,动脉血压升高者更容易出现低衰减小叶增厚和瓣叶运动受限46。基于上述证据,推测动脉血压升高可能通过增加瓣叶的血栓形成风险进一步推动生物瓣钙化和退变的发生和发展。

5. 动脉血压升高与人工瓣膜-患者不匹配、瓣周漏并发症共同影响生物瓣钙化

PPM和瓣膜植入后瓣周漏是TAVR后常见的并发症。PPM指植入的人工瓣膜的有效瓣口面积相对于患者的体表面积和心排血量需求过小,导致术后残留较大的跨瓣压差。严重PPM与外科主动脉瓣置换术患者和TAVR患者术后再入院率增加及长期存活率下降密切相关,同时也是术后结构性瓣膜衰败的重要危险因素47-48。研究表明,PPM所致“小瓣口”的压力负荷和血流剪切应力可增加生物瓣表面的机械应力,从而加速钙化进程,最终引发生物瓣衰败5。同时,多项大型中心注册数据研究表明,较大的体表面积是生物瓣衰败的独立危险因素8-9。因此,在动脉血压升高的情况下,PPM患者植入的瓣膜可能承受更严重的机械应力,加速生物瓣瓣叶的损伤和组织变性、钙质沉积。而生物瓣钙化将加剧血流动力学异常,形成动脉血压升高、PPM和生物瓣钙化及衰败之间的恶性循环。此种机制强化了“动脉血压升高促进TAVR后生物瓣钙化发生发展”的科学假设。这一发现推动了临床生物瓣设计的优化,强调选择具有更佳血流动力学性能的大瓣膜以减低PPM风险。

瓣周漏作为TAVR后另一常见并发症,与生物瓣耐久性下降和生物瓣衰败也相关49。虽然尚无直接证据表明动脉血压升高与瓣周漏相互作用影响生物瓣钙化,但理论上,动脉血压升高引起的高剪切应力可能与瓣叶和瓣架的退变相关,并进一步影响瓣周漏的演变。瓣周漏导致的湍流、血流瘀滞和高速射流等瓣周异常血流动力学改变也可能促进血栓形成及钙化的发生和发展。这些机制提示动脉血压升高可能在瓣周漏相关钙化的形成和进展中扮演重要角色,但需更多研究予以验证。

6. 结语

综上所述,通过分析动脉血压升高与原发性主动脉瓣钙化及衰退的关系,并结合生物瓣的特性及动脉血压升高作为生物瓣衰退危险因素的研究证据,推测动脉血压升高是TAVR后生物瓣钙化的重要促进因素。动脉血压升高可通过增加机械应力、促使RAS失衡、促进瓣叶血栓形成等途径引发生物瓣钙化、加速生物瓣衰败进程,并可能与TAVR后瓣周漏、PPM等并发症相互作用,增加生物瓣钙化及衰败风险,从而影响患者长期预后。因此,控制血压、优化术前评估和选择适宜的生物瓣类型对于减少TAVR后生物瓣钙化发生及提高生物瓣耐久性具有重要意义。未来的研究应进一步探讨动脉血压升高与TAVR后生物瓣钙化的因果关系,并通过临床实践加以验证。

Acknowledgments

研究得到浙江省自然科学基金(LQ22H020008)、国家重点研发计划(2020YFC2008100)、浙江大学滨江研究院自研项目(ZY202205SMKY001)、浙江省“尖兵”“领雁”研发攻关计划(2022C03063)支持

Acknowledgments

The study was supported by the Natural Science Foundation of Zhejiang Province (LQ22H020 008), National Key R&D Program of China (2020YFC2008100), Independent Research Project of Binjiang Institute of Zhejiang University (ZY202205SMKY001), “Pioneer” and “Leading Goose” R&D Program of Zhejiang Province (2022 C03063)

[缩略语]

经导管主动脉瓣置换术(transcatheter aortic valve replacement,TAVR);人工瓣膜-患者不匹配(prosthesis-patient mismatch,PPM);肾素-血管紧张素系统(renin-angiotensin system,RAS)

利益冲突声明

所有作者均声明不存在利益冲突

Conflict of Interests

The authors declare that there is no conflict of interests

医学伦理

研究不涉及人体或动物实验

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors

参考文献(References)

  • 1.SIONTIS G C M, OVERTCHOUK P, CAHILL T J, et al. Transcatheter aortic valve implantation vs. surgical aortic valve replacement for treatment of symptomatic severe aortic stenosis: an updated meta-analysis[J]. Eur Heart J, 2019, 40(38): 3143-3153. 10.1093/eurheartj/ehz275 [DOI] [PubMed] [Google Scholar]
  • 2.FORREST J K, DEEB G M, YAKUBOV S J, et al. 2-year outcomes after transcatheter versus surgical aortic valve replacement in low-risk patients[J]. J Am Coll Cardiol, 2022, 79(9): 882-896. [DOI] [PubMed] [Google Scholar]
  • 3.YERASI C, ROGERS T, FORRESTAL B J, et al. Transcatheter versus surgical aortic valve replacement in young, low-risk patients with severe aortic stenosis[J]. JACC Cardiovasc Interv, 2021, 14(11): 1169-1180. 10.1016/j.jcin.2021.03.058 [DOI] [PubMed] [Google Scholar]
  • 4.BEYERSDORF F, VAHANIAN A, MILOJEVIC M, et al. 2021 ESC/EACTS guidelines for the management of valvular heart disease[J]. Eur J Cardio Thorac Surg, 2021, 60(4): 727-800. [DOI] [PubMed] [Google Scholar]
  • 5.KOSTYUNIN A E, YUZHALIN A E, REZVOVA M A, et al. Degeneration of bioprosthetic heart valves: update 2020[J/OL]. J Am Heart Assoc, 2020, 9(19): e018506. 10.1161/jaha.120.018506 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.HEAD S J, ÇELIK M, KAPPETEIN A P. Mechanical versus bioprosthetic aortic valve replacement[J]. Eur Heart J, 2017, 38(28): 2183-2191. 10.1093/eurheartj/ehx141 [DOI] [PubMed] [Google Scholar]
  • 7.CHIANG Y P, CHIKWE J, MOSKOWITZ A J, et al. Survival and long-term outcomes following bioprosthetic vs mechanical aortic valve replacement in patients aged 50 to 69 years[J]. JAMA, 2014, 312(13): 1323-1329. 10.1001/jama.2014.12679 [DOI] [PubMed] [Google Scholar]
  • 8.O’HAIR D, YAKUBOV S J, GRUBB K J, et al. Struc-tural valve deterioration after self-expanding transcath-eter or surgical aortic valve implantation in patients at intermediate or high risk[J]. JAMA Cardiol, 2023, 8(2): 111-119. 10.1001/jamacardio.2022.4627 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.JØRGENSEN T H, THYREGOD H G H, IHLEMANN N, et al. Eight-year outcomes for patients with aortic valve stenosis at low surgical risk randomized to trans-catheter vs. surgical aortic valve replacement[J]. Eur Heart J, 2021, 42(30): 2912-2919. 10.1093/eurheartj/ehab375 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.FORREST J K, DEEB G M, YAKUBOV S J, et al. 3-Year outcomes after transcatheter or surgical aortic valve replacement in low-risk patients with aortic stenosis[J]. J Am Coll Cardiol, 2023, 81(17): 1663-1674. [DOI] [PubMed] [Google Scholar]
  • 11.DANGAS G D, TIJSSEN J G P, WÖHRLE J, et al. A controlled trial of rivaroxaban after transcatheter aortic-valve replacement[J]. N Engl J Med, 2020, 382(2): 120-129. 10.1056/nejmc2017351 [DOI] [PubMed] [Google Scholar]
  • 12.SATHANANTHAN J, LAUCK S, POLDERMAN J, et al. Ten year follow-up of high-risk patients treated during the early experience with transcatheter aortic valve replacement[J/OL]. Cathet Cardio Intervent, 2021, 97(3): E431-E437. 10.1002/ccd.29124 [DOI] [PubMed] [Google Scholar]
  • 13.THYREGOD H G H, JØRGENSEN T H, IHLEMANN N, et al. Transcatheter or surgical aortic valve implan-tation: 10-year outcomes of the NOTION trial[J]. Eur Heart J, 2024, 45(13): 1116-1124. 10.1093/eurheartj/ehae043 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.VAN MIEGHEM N M, DEEB G M, SØNDERGAARD L, et al. Self-expanding transcatheter vs surgical aortic valve replacement in intermediate-risk patients: 5-year outcomes of the SURTAVI randomized clinical trial[J]. JAMA Cardiol, 2022, 7(10): 1000-1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.IWATA S, RUSSO C, JIN Z, et al. Higher ambulatory blood pressure is associated with aortic valve calcifica-tion in the elderly[J]. Hypertension, 2013, 61(1): 55-60. 10.1161/hypertensionaha.112.202697 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.SAEED S, SCALISE F, CHAMBERS J B, et al. Hyper-tension in aortic stenosis: a focused review and recom-mendations for clinical practice[J]. J Hypertens, 2020, 38(7): 1211-1219. 10.1097/hjh.0000000000002426 [DOI] [PubMed] [Google Scholar]
  • 17.MANCUSI C, DE SIMONE G, BRGULJAN HITIJ J, et al. Management of patients with combined arterial hypertension and aortic valve stenosis: a consensus document from the Council on Hypertension and Council on Valvular Heart Disease of the European Society of Cardiology, the European Association of Cardiovas-cular Imaging (EACVI), and the European Association of Percutaneous Cardiovascular Interventions (EAPCI)[J]. Eur Heart J Cardiovasc Pharmacother, 2021, 7(3): 242-250. 10.1093/ehjcvp/pvaa040 [DOI] [PubMed] [Google Scholar]
  • 18.LORENZATTI D, PIÑA P, DAICH J, et al. Diagnostic accuracy of virtual non-contrast CT for aortic valve stenosis severity evaluation[J]. J Cardiovasc Comput Tomogr, 2024, 18(1): 50-55. 10.1016/j.jcct.2023.10.007 [DOI] [PubMed] [Google Scholar]
  • 19.SERA F, RUSSO C, IWATA S, et al. Arterial wave reflection and aortic valve calcification in an elderly community-based cohort[J]. J Am Soc Echocardiogr, 2015, 28(4): 430-436. 10.1016/j.echo.2014.12.011 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.LEIBOWITZ D, YOSHIDA Y, JIN Z, et al. Factors associated with the progression of aortic valve calcifi-cation in older adults[J]. Int J Cardiol, 2023, 381: 76-80. 10.1016/j.ijcard.2023.03.059 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.ZHANG B, SALAUN E, CÔTÉ N, et al. Association of bioprosthetic aortic valve leaflet calcification on hemo-dynamic and clinical outcomes[J]. J Am Coll Cardiol, 2020, 76(15): 1737-1748. 10.1016/j.jacc.2020.08.034 [DOI] [PubMed] [Google Scholar]
  • 22.PATEL S P, GARCIA S, SATHANANTHAN J, et al. Structural valve deterioration in transcatheter aortic bioprostheses: diagnosis, pathogenesis, and treatment[J]. Struct Heart, 2023, 7(3): 100155. 10.1016/j.shj.2022.100155 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.TNAY T D, SHELL D, LUI A. Review of bioprosthetic structural valve deterioration: patient or valve?[J]. J Card Surg, 2022, 37(12): 5243-5253. 10.1111/jocs.17081 [DOI] [PubMed] [Google Scholar]
  • 24.TASTETL, CAPOULADER, CLAVELM A, et al. Systolic hypertension and progression of aortic valve calcification in patients with aortic stenosis: results from the PROGRESSA study[J]. Eur Heart J Cardiovasc Imaging, 2017, 18(1): 70-78. 10.1093/ehjci/jew013 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.LINEFSKY J, KATZ R, BUDOFF M, et al. Stages of systemic hypertension and blood pressure as correlates of computed tomography-assessed aortic valve calcium (from the multi-ethnic study of atherosclerosis)[J]. Am J Cardiol, 2011, 107(1): 47-51. 10.1016/j.amjcard.2010.08.042 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.MAEDER M T, RICKLI H, WEBER L, et al. Systemic blood pressure in severe aortic stenosis: haemodynamic correlates and long-term prognostic impact[J]. ESC Heart Fail, 2023, 10(1): 274-283. 10.1002/ehf2.14192 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.ARZANI A, MOFRAD M R K. A strain-based finite element model for calcification progression in aortic valves[J]. J Biomech, 2017, 65: 216-220. 10.1016/j.jbiomech.2017.10.014 [DOI] [PubMed] [Google Scholar]
  • 28.ABDEL-WAHAB M, LANDT M, NEUMANN F J, et al. 5-year outcomes after TAVR with balloon-expandable versus self-expanding valves results from the CHOICE randomized clinical trial[J]. JACC Cardiovasc Interv, 2020, 13(9): 1071-1082. 10.1016/j.jcin.2019.12.026 [DOI] [PubMed] [Google Scholar]
  • 29.DIDIER R, ELTCHANINOFF H, DONZEAU-GOUGE P, et al. Five-year clinical outcome and valve durability after transcatheter aortic valve replacement in high-risk patients[J]. Circulation, 2018, 138(23): 2597-2607. 10.1161/circulationaha.118.036866 [DOI] [PubMed] [Google Scholar]
  • 30.SCHOEN F J, LEVY R J. Calcification of tissue heart valve substitutes: progress toward understanding and prevention[J]. Ann Thorac Surg, 2005, 79(3): 1072-1080. 10.1016/j.athoracsur.2004.06.033 [DOI] [PubMed] [Google Scholar]
  • 31.BRIAND M, PIBAROT P, DESPRÉS J P, et al. Meta-bolic syndrome is associated with faster degeneration of bioprosthetic valves[J]. Circulation, 2006, 114(1 suppl): I512-I517. 10.1161/circulationaha.105.000422 [DOI] [PubMed] [Google Scholar]
  • 32.MANJI R A, ZHU L F, NIJJAR N K, et al. Glutaral-dehyde-fixed bioprosthetic heart valve conduits calcify and fail from xenograft rejection[J]. Circulation, 2006, 114(4): 318-327. 10.1161/circulationaha.105.549311 [DOI] [PubMed] [Google Scholar]
  • 33.BORER J S. Bioprosthesis failure: is calcification the only problem?[J]. J Am Coll Cardiol, 2020, 76(15): 1749-1750. 10.1016/j.jacc.2020.08.065 [DOI] [PubMed] [Google Scholar]
  • 34.GOLDBARG S H, ELMARIAH S, MILLER M A, et al. Insights into degenerative aortic valve disease[J]. J Am Coll Cardiol, 2007, 50(13): 1205-1213. 10.1016/j.jacc.2007.06.024 [DOI] [PubMed] [Google Scholar]
  • 35.O’BRIEN K D, SHAVELLE D M, CAULFIELD M T, et al. Association of angiotensin-converting enzyme with low-density lipoprotein in aortic valvular lesions and in human plasma[J]. Circulation, 2002, 106(17): 2224-2230. 10.1161/01.cir.0000035655.45453.d2 [DOI] [PubMed] [Google Scholar]
  • 36.HELSKE S, LINDSTEDT K A, LAINE M, et al. Induction of local angiotensin Ⅱ-producing systems in stenotic aortic valves[J]. J Am Coll Cardiol, 2004, 44(9): 1859-1866. 10.1016/j.jacc.2004.07.054 [DOI] [PubMed] [Google Scholar]
  • 37.AKAT K, BORGGREFE M, KADEN J J. Aortic valve calcification: basic science to clinical practice[J]. Heart, 2009, 95(8): 616-623. 10.1136/hrt.2007.134783 [DOI] [PubMed] [Google Scholar]
  • 38.HELSKE S, SYVÄRANTA S, KUPARI M, et al. Possible role for mast cell-derived cathepsin G in the adverse remodelling of stenotic aortic valves[J]. Eur Heart J, 2006, 27(12): 1495-1504. 10.1093/eurheartj/ehi706 [DOI] [PubMed] [Google Scholar]
  • 39.FUJISAKA T, HOSHIGA M, HOTCHI J, et al. Angio-tensin Ⅱ promotes aortic valve thickening independent of elevated blood pressure in apolipoprotein-E deficient mice[J]. Atherosclerosis, 2013, 226(1): 82-87. 10.1016/j.atherosclerosis.2012.10.055 [DOI] [PubMed] [Google Scholar]
  • 40.ARISHIRO K, HOSHIGA M, NEGORO N, et al. Angio-tensin receptor-1 blocker inhibits atherosclerotic changes and endothelial disruption of the aortic valve in hypercholesterolemic rabbits[J]. J Am Coll Cardiol, 2007, 49(13): 1482-1489. 10.1016/j.jacc.2006.11.043 [DOI] [PubMed] [Google Scholar]
  • 41.CÔTÉ N, COUTURE C, PIBAROT P, et al. Angiotensin receptor blockers are associated with a lower remod-elling score of stenotic aortic valves[J]. Eur J Clin Invest, 2011, 41(11): 1172-1179. 10.1111/j.1365-2362.2011.02522.x [DOI] [PubMed] [Google Scholar]
  • 42.CÔTÉ N, PIBAROT P, PÉPIN A, et al. Oxidized low-density lipoprotein, angiotensin Ⅱ and increased waist cirumference are associated with valve inflammation in prehypertensive patients with aortic stenosis[J]. Int J Cardiol, 2010, 145(3): 444-449. 10.1016/j.ijcard.2009.05.054 [DOI] [PubMed] [Google Scholar]
  • 43.CHEN S, REDFORS B, NAZIF T, et al. Impact of renin-angiotensin system inhibitors on clinical outcomes in patients with severe aortic stenosis undergoing transcatheter aortic valve replacement: an analysis of from the PARTNER 2 trial and registries[J]. Eur Heart J, 2020, 41(8): 943-954. 10.1093/eurheartj/ehz769 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.SELLERS S L, TURNER C T, SATHANANTHAN J, et al. Transcatheter aortic heart valves histological analysis providing insight to leaflet thickening and structural valve degeneration[J]. JACC Cardiovasc Imag, 2019, 12(1): 135-145. 10.1016/j.jcmg.2018.06.028 [DOI] [PubMed] [Google Scholar]
  • 45.JAFFER I H, FREDENBURGH J C, HIRSH J, et al. Medical device-induced thrombosis: what causes it and how can we prevent it?[J]. J Thromb Haemost, 2015, 13(Suppl 1): S72-S81. 10.1111/jth.12961 [DOI] [PubMed] [Google Scholar]
  • 46.KOREN O, PATEL V, CHAKRAVARTY T, et al. Leaflet thrombosis in transcatheter aortic valve inter-vention: mechanisms, prevention, and treatment options[J]. Front Cardiovasc Med, 2023, 10: 1249604. 10.3389/fcvm.2023.1249604 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.FLAMENG W, HERREGODS M C, VERCALSTEREN M, et al. Prosthesis-patient mismatch predicts structural valve degeneration in bioprosthetic heart valves[J]. Circulation, 2010, 121(19): 2123-2129. 10.1161/circulationaha.109.901272 [DOI] [PubMed] [Google Scholar]
  • 48.FALLON J M, DESIMONE J P, MATTHEW BRENNAN J, et al. The incidence and consequence of prosthesis-patient mismatch after surgical aortic valve replace-ment[J]. Ann Thorac Surg, 2018, 106(1): 14-22. 10.1016/j.athoracsur.2018.01.090 [DOI] [PubMed] [Google Scholar]
  • 49.BHUSHAN S, HUANG X, LI Y, et al. Paravalvular leak after transcatheter aortic valve implantation its incidence, diagnosis, clinical implications, prevention, management, and future perspectives: a review article[J]. Curr Probl Cardiol, 2022, 47(10): 100957. 10.1016/j.cpcardiol.2021.100957 [DOI] [PubMed] [Google Scholar]

Articles from Journal of Zhejiang University (Medical Sciences) are provided here courtesy of Zhejiang University Press

RESOURCES