Abstract
Intact pigeon heart mitochondria showed 10-30% ubiquinone reduction in the absence of substrates. This reduction could not be ascribed to endogenous substrates, as judged by lack of effect of inhibitors and uncouplers and by the very low endogenous respiratory rate. Addition of NADH in the presence of antimycin caused further reduction of about 10% ubiquinone, apparently coupled to the rotenone- and antimycin-sensitive exo-NADH oxidase system [Rasmussen (1969) FEBS Lett. 2, 157-162]. Citric acid cycle substrates reduced most of the remaining ubiquinone in the presence of antimycin; 15-20% of the total ubiquinone content was still in the oxidized form under the most reducing conditions. Three pools of ubiquinone therefore appeared to be present in heart mitochondria: a metabolically inactive pool consisting of reduced as well as oxidized ubiquinone, a pool coupled to oxidation of added (cytoplasmic) NADH, and the well-known pool coupled to citric acid cycle oxidations. Ferricyanide selectively oxidized the ubiquinol reduced by added NADH, indicating that this pool is situated on the outer surface of the mitochondrial inner membrane. Ubiquinone reduction levels were determined with a new method, which is described in detail.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brown G. G., Beattie D. S. Role of coenzyme Q in the mitochondrial respiratory chain. Reconstitution of activity in coenzyme Q deficient mutants of yeast. Biochemistry. 1977 Oct 4;16(20):4449–4454. doi: 10.1021/bi00639a019. [DOI] [PubMed] [Google Scholar]
- CRANE F. L., DILLEY R. A. DETERMINATION OF COENZYME Q (UBIQUINONE). Methods Biochem Anal. 1963;11:279–306. doi: 10.1002/9780470110294.ch6. [DOI] [PubMed] [Google Scholar]
- Crane F. L. Hydroquinone dehydrogenases. Annu Rev Biochem. 1977;46:439–469. doi: 10.1146/annurev.bi.46.070177.002255. [DOI] [PubMed] [Google Scholar]
- Eccleston J. F., Messerschmidt R. G., Yates D. W. A simple rapid mixing device. Anal Biochem. 1980 Jul 15;106(1):73–77. doi: 10.1016/0003-2697(80)90120-7. [DOI] [PubMed] [Google Scholar]
- Grinius L. L., Guds T. I., Skulachev V. P. Arrangement of the electric potential-generating redox chain in the mitochondrial membrane. J Bioenerg. 1971 May;2(2):101–113. doi: 10.1007/BF01648925. [DOI] [PubMed] [Google Scholar]
- Gutman M. Electron flux through the mitochondrial ubiquinone. Biochim Biophys Acta. 1980 Dec 22;594(1):53–84. doi: 10.1016/0304-4173(80)90013-0. [DOI] [PubMed] [Google Scholar]
- Kalsi S. K., Wrigglesworth J. M. Spectral evidence for an intermediate species formed during the reduction of ubiquinone-10 by borohydride. Biochem Soc Trans. 1981 Feb;9(1):86–87. doi: 10.1042/bst0090086. [DOI] [PubMed] [Google Scholar]
- Klingenberg M. The ferricyanide method for elucidating the sidedness of membrane-bound dehydrogenases. Methods Enzymol. 1979;56:229–233. doi: 10.1016/0076-6879(79)56025-x. [DOI] [PubMed] [Google Scholar]
- Kröger A. Determination of contents and redox states of ubiquinone and menaquinone. Methods Enzymol. 1978;53:579–591. doi: 10.1016/s0076-6879(78)53059-0. [DOI] [PubMed] [Google Scholar]
- Kröger A., Klingenberg M. Further evidence for the pool function of ubiquinone as derived from the inhibition of the electron transport by antimycin. Eur J Biochem. 1973 Nov 15;39(2):313–323. doi: 10.1111/j.1432-1033.1973.tb03129.x. [DOI] [PubMed] [Google Scholar]
- Kröger A., Klingenberg M. On the role of ubiquinone in mitochondria. II. Redox reactions of ubiquinone under the control of oxidative phosphorylation. Biochem Z. 1966 Jun 7;344(4):317–336. [PubMed] [Google Scholar]
- Kröger A., Klingenberg M. The kinetics of the redox reactions of ubiquinone related to the electron-transport activity in the respiratory chain. Eur J Biochem. 1973 Apr;34(2):358–368. doi: 10.1111/j.1432-1033.1973.tb02767.x. [DOI] [PubMed] [Google Scholar]
- Kröger A. The interaction of the radicals of ubiquinone in mitochondrial electron transport. FEBS Lett. 1976 Jun 15;65(3):278–280. doi: 10.1016/0014-5793(76)80128-7. [DOI] [PubMed] [Google Scholar]
- Landi L., Cabrini L., Sechi A. M., Pasquali P. Antioxidative effect of ubiquinones on mitochondrial membranes. Biochem J. 1984 Sep 1;222(2):463–466. doi: 10.1042/bj2220463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsushita K., Yamada M., Shinagawa E., Adachi O., Ameyama M. Function of ubiquinone in the electron transport system of Pseudomonas aeruginosa grown aerobically. J Biochem. 1980 Sep;88(3):757–764. doi: 10.1093/oxfordjournals.jbchem.a133028. [DOI] [PubMed] [Google Scholar]
- Mitchell P. Protonmotive redox mechanism of the cytochrome b-c1 complex in the respiratory chain: protonmotive ubiquinone cycle. FEBS Lett. 1975 Aug 1;56(1):1–6. doi: 10.1016/0014-5793(75)80098-6. [DOI] [PubMed] [Google Scholar]
- Norling B., Glazek E., Nelson B. D., Ernster L. Studies with ubiquinone-depleted submitochondrial particles. Quantitative incorporation of small amounts of ubiquinone and its effects on the NADH and succinate oxidase activities. Eur J Biochem. 1974 Sep 16;47(3):475–482. doi: 10.1111/j.1432-1033.1974.tb03715.x. [DOI] [PubMed] [Google Scholar]
- REDFEARN E. R., PUMPHREY A. M. Oxidation-reduction levels of ubiquinone (coenzyme Q) in different metabolic states of rat liver mitochondria. Biochem Biophys Res Commun. 1960 Dec;3:650–653. doi: 10.1016/0006-291x(60)90080-2. [DOI] [PubMed] [Google Scholar]
- Rasmussen U. F., Rasmussen H. N., Jørgensen B. M. Three functionally different cytochrome b redox centres in pigeon heart mitochondria. Biochem J. 1982 Feb 1;201(2):311–320. doi: 10.1042/bj2010311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasmussen U. F., Rasmussen H. N. The NADH oxidase system (external) of muscle mitochondria and its role in the oxidation of cytoplasmic NADH. Biochem J. 1985 Aug 1;229(3):631–641. doi: 10.1042/bj2290631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasmussen U. F. The oxidation of added NADH by intact heart mitochondria. FEBS Lett. 1969 Jan;2(3):157–162. doi: 10.1016/0014-5793(69)80006-2. [DOI] [PubMed] [Google Scholar]
- Rich P. R. Electron and proton transfers through quinones and cytochrome bc complexes. Biochim Biophys Acta. 1984 Apr 9;768(1):53–79. doi: 10.1016/0304-4173(84)90007-7. [DOI] [PubMed] [Google Scholar]
- Salerno J. C., Harmon H. J., Blum H., Leigh J. S., Ohnishi T. A transmembrane quinone pair in the succinate dehydrogenase--cytochrome b region. FEBS Lett. 1977 Oct 15;82(2):179–182. doi: 10.1016/0014-5793(77)80579-6. [DOI] [PubMed] [Google Scholar]
- Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
- Schneider H., Lemasters J. J., Hackenbrock C. R. Lateral diffusion of ubiquinone during electron transfer in phospholipid- and ubiquinone-enriched mitochondrial membranes. J Biol Chem. 1982 Sep 25;257(18):10789–10793. [PubMed] [Google Scholar]