Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Aug 1;229(3):759–763. doi: 10.1042/bj2290759

Differences in fragmentation between bound and unbound bovine secretory component suggest a model for its interaction with polymeric immunoglobulin.

D Beale
PMCID: PMC1145121  PMID: 4052023

Abstract

Unbound bovine secretory component was cleaved into two-domain and one-domain fragments by trypsin within 1 h. Bovine secretory component covalently bound to bovine IgA dimer, as in secretory IgA, was much more resistant to fragmentation, which did not proceed beyond the three-domain stage even after 5 h. Bovine secretory component non-covalently bound to bovine IgM or to human IgM or IgA polymer was also relatively resistant to fragmentation, which again was largely arrested at the three-domain stage. A model for the binding of secretory component to polymeric immunoglobulin is proposed.

Full text

PDF
759

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beale D. A comparison of the amino acid sequences of the extracellular domains of the immunoglobulin superfamily. Possible correlations between conservancy and conformation. Comp Biochem Physiol B. 1985;80(2):181–194. doi: 10.1016/0305-0491(85)90194-4. [DOI] [PubMed] [Google Scholar]
  2. Beale D., Hopley J. G. Fragmentation and reduction of bovine secretory component. Preparation of a biologically active fragment and some evidence for a multiple-domain structure. Biochem J. 1985 Mar 15;226(3):661–667. doi: 10.1042/bj2260661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beale D., Van Dort T. A comparison of the proteolytic fragmentation of immunoglobulin M from several different mammalian species. Comp Biochem Physiol B. 1982;71(3):475–482. doi: 10.1016/0305-0491(82)90411-4. [DOI] [PubMed] [Google Scholar]
  4. Brandtzaeg P. Mucosal and glandular distribution of immunoglobulin components: differential localization of free and bound SC in secretory epithelial cells. J Immunol. 1974 Apr;112(4):1553–1559. [PubMed] [Google Scholar]
  5. Brandtzaeg P. Polymeric IgA is complexed with secretory component (SC) on the surface of human intestinal epithelial cells. Scand J Immunol. 1978;8(1):39–52. doi: 10.1111/j.1365-3083.1978.tb00494.x. [DOI] [PubMed] [Google Scholar]
  6. Brown W. R., Isobe K., Nakane P. K., Pacini B. Studies on translocation of immunoglobulins across intestinal epithelium. IV. Evidence for binding of IgA and IgM to secretory component in intestinal epithelium. Gastroenterology. 1977 Dec;73(6):1333–1339. [PubMed] [Google Scholar]
  7. Butler J. E. Physicochemical and immunochemical studies on bovine IgA and glycoprotein-a. Biochim Biophys Acta. 1971 Dec 28;251(3):435–449. doi: 10.1016/0005-2795(71)90133-4. [DOI] [PubMed] [Google Scholar]
  8. Crago S. S., Kulhavy R., Prince S. J., Mestecky J. Secretory component of epithelial cells is a surface receptor for polymeric immunoglobulins. J Exp Med. 1978 Jun 1;147(6):1832–1837. doi: 10.1084/jem.147.6.1832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Deisenhofer J. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-A resolution. Biochemistry. 1981 Apr 28;20(9):2361–2370. [PubMed] [Google Scholar]
  10. Groves M. L., Gordon W. G. Isolation of a new glycoprotein-a and a gamma-G-globulin from individual cow milks. Biochemistry. 1967 Aug;6(8):2388–2394. doi: 10.1021/bi00860a014. [DOI] [PubMed] [Google Scholar]
  11. Kühn L. C., Kraehenbuhl J. P. Role of secretory component, a secreted glycoprotein, in the specific uptake of IgA dimer by epithelial cells. J Biol Chem. 1979 Nov 10;254(21):11072–11081. [PubMed] [Google Scholar]
  12. Kühn L. C., Kraehenbuhl J. P. The membrane receptor for polymeric immunoglobulin is structurally related to secretory component. Isolation and characterization of membrane secretory component from rabbit liver and mammary gland. J Biol Chem. 1981 Dec 10;256(23):12490–12495. [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Mostov K. E., Friedlander M., Blobel G. The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin-like domains. Nature. 1984 Mar 1;308(5954):37–43. doi: 10.1038/308037a0. [DOI] [PubMed] [Google Scholar]
  15. Richardson N. E., Feinstein A. Mouse intracellular immunoglobulin M. Structure and identification of a free thiol group. Biochem J. 1978 Dec 1;175(3):959–967. doi: 10.1042/bj1750959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schiffer M., Girling R. L., Ely K. R., Edmundson A. B. Structure of a lambda-type Bence-Jones protein at 3.5-A resolution. Biochemistry. 1973 Nov 6;12(23):4620–4631. doi: 10.1021/bi00747a013. [DOI] [PubMed] [Google Scholar]
  17. Underdown B. J., Dorrington K. J. Studies on the structural and conformational basis for the relative resistance of serum and secretory immunoglobulin A to proteolysis. J Immunol. 1974 Mar;112(3):949–959. [PubMed] [Google Scholar]
  18. Woodard C. S., Splawski J. B., Goldblum R. M., Denney R. M. Characterization of epitopes of human secretory component on free secretory component, secretory IgA, and membrane-associated secretory component. J Immunol. 1984 Oct;133(4):2116–2125. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES