Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1985 Dec;369:33–44. doi: 10.1113/jphysiol.1985.sp015886

Refractive sectors in the visual field of the pigeon eye.

F W Fitzke, B P Hayes, W Hodos, A L Holden, J C Low
PMCID: PMC1192634  PMID: 4093886

Abstract

Scheiner's principle has been used in electroretinographic optometry to refract the photoreceptor plane in different regions of the visual field of the pigeon eye. Along the horizon and in the upper visual field the eye is emmetropic, or nearly so. Below the horizon the eye becomes progressively more myopic at more negative elevations, refractive state falling to -5D at -90 deg. Lower field myopia is not an artifact of oblique astigmatism, nor of an aberration symmetrical about the optical axis. It is suggested that lower field myopia is a biological adaptation suited to keep the photoreceptors in the upper retina conjugate with the ground. Refractive state below the horizon can be fitted with a sine function by varying a parameter H (eye-ground height). The value of H agrees well with directly measured eye-ground height.

Full text

PDF
33

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Binggeli R. L., Paule W. J. The pigeon retina: quantitative aspects of the optic nerve and ganglion cell layer. J Comp Neurol. 1969 Sep;137(1):1–18. doi: 10.1002/cne.901370102. [DOI] [PubMed] [Google Scholar]
  2. CATANIA A. C. ON THE VISUAL ACUITY OF THE PIGEON. J Exp Anal Behav. 1964 Sep;7:361–366. doi: 10.1901/jeab.1964.7-361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cooper M. L., Pettigrew J. D. A neurophysiological determination of the vertical horopter in the cat and owl. J Comp Neurol. 1979 Mar 1;184(1):1–26. doi: 10.1002/cne.901840102. [DOI] [PubMed] [Google Scholar]
  4. Fitzke F. W., Hayes B. P., Hodos W., Holden A. L. Electrophysiological optometry using Scheiner's principle in the pigeon eye. J Physiol. 1985 Dec;369:17–31. doi: 10.1113/jphysiol.1985.sp015885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Galifret Y. Les diverses aires fonctionnelles de la rétine du pigeon. Z Zellforsch Mikrosk Anat. 1968;86(4):535–545. [PubMed] [Google Scholar]
  6. Glickstein M., Millodot M. Retinoscopy and eye size. Science. 1970 May 1;168(3931):605–606. doi: 10.1126/science.168.3931.605. [DOI] [PubMed] [Google Scholar]
  7. Green D. G., Powers M. K., Banks M. S. Depth of focus, eye size and visual acuity. Vision Res. 1980;20(10):827–835. doi: 10.1016/0042-6989(80)90063-2. [DOI] [PubMed] [Google Scholar]
  8. Martin G. R., Young S. R. The retinal binocular field of the pigeon (Columba livia: English racing homer). Vision Res. 1983;23(9):911–915. doi: 10.1016/0042-6989(83)90061-5. [DOI] [PubMed] [Google Scholar]
  9. Millodot M., Blough P. The refractive state of the pigeon eye. Vision Res. 1971 Sep;11(9):1019–1022. doi: 10.1016/0042-6989(71)90223-9. [DOI] [PubMed] [Google Scholar]
  10. Nye P. W. On the functional differences between frontal and lateral visual fields of the pigeon. Vision Res. 1973 Mar;13(3):559–574. doi: 10.1016/0042-6989(73)90024-2. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES