Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1973 Dec;136(4):999–1009. doi: 10.1042/bj1360999

Effects of membrane depolarization on nicotinamide nucleotide fluorescence in brain slices

Peter Lipton 1,*
PMCID: PMC1166050  PMID: 4150654

Abstract

1. Simultaneous measurement of tissue NAD(P)H fluorescence and respiration was used to elucidate some of the early chemical changes after depolarization of the membranes of cerebral-cortical cells. Depolarization was effected by the application of a train of short-duration voltage pulses across a slice of guinea-pig cerebral cortex. The pulses cause a biphasic change in fluorescence corresponding to an early (within 1s) oxidation and later (about 10s) reduction of nicotinamide nucleotide. The major portions of both these redox changes are unrelated to the accompanying increase in slice respiration of about 75%. 2. The early oxidation requires Ca2+ and phosphate in the bathing medium and appears to be largely due to an early mitochondrial uptake of these ions. 3. The ensuing reduction occurs in the cytosol, as judged by its almost complete elimination in the presence of exogenous pyruvate. It becomes markedly attenuated with increasing time of incubation. This and the ability of exogenous 6-N-2′-O-dibutyryl cyclic AMP to cause a reduction in the absence of electrical pulses suggest that it results from a cyclic AMP-mediated activation of glycogenolysis. 4. Further results, obtained in the presence of exogenous pyruvate, indicate that in addition to the above effects a net transfer of NADH from the mitochondrial to cytosolic space (presumably via a shuttle mechanism) is activated by the electrical pulses. 5. The lack of any sizeable (more than 2% of basal fluorescence) fluorescence change associated with the respiratory increase caused by the pulses, and the fact that any change which may be associated with it corresponds to a small reduction of mitochondrial nicotinamide nucleotide, show that a simple state 4 → state 3 mitochondrial transition cannot account for the increased respiration. The results suggest, rather, a co-ordinated control of respiration, at more than one site.

Full text

PDF
999

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bourke R. S., Tower D. B. Fluid compartmentation and electrolytes of cat cerebral cortex in vitro. II. Sodium, potassium and chloride of mature cerebral cortex. J Neurochem. 1966 Nov;13(11):1099–1117. doi: 10.1111/j.1471-4159.1966.tb04268.x. [DOI] [PubMed] [Google Scholar]
  2. Brauser B., Bücher Th, Dolivo M. Redox transitions of cytochromes and pyridine nucleotides upon stimulation of an isolated rat ganglion. FEBS Lett. 1970 Jun 27;8(5):297–300. doi: 10.1016/0014-5793(70)80291-5. [DOI] [PubMed] [Google Scholar]
  3. Bull R. J., Trevor A. J. Saxitoxin, tetrodotoxin and the metabolism and cation fluxes in isolated cerebral tissues. J Neurochem. 1972 Apr;19(4):999–1009. doi: 10.1111/j.1471-4159.1972.tb01420.x. [DOI] [PubMed] [Google Scholar]
  4. Bücher T., Brauser B., Conze A., Klein F., Langguth O., Sies H. State of oxidation-reduction and state of binding in the cytosolic NADH-system as disclosed by equilibration with extracellular lactate-pyruvate in hemoglobin-free perfused rat liver. Eur J Biochem. 1972 May 23;27(2):301–317. doi: 10.1111/j.1432-1033.1972.tb01840.x. [DOI] [PubMed] [Google Scholar]
  5. CHANCE B., COHEN P., JOBSIS F., SCHOENER B. Intracellular oxidation-reduction states in vivo. Science. 1962 Aug 17;137(3529):499–508. doi: 10.1126/science.137.3529.499. [DOI] [PubMed] [Google Scholar]
  6. CHANCE B. THE ENERGY-LINKED REACTION OF CALCIUM WITH MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2729–2748. [PubMed] [Google Scholar]
  7. CHANCE B., WILLIAMS G. R. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956;17:65–134. doi: 10.1002/9780470122624.ch2. [DOI] [PubMed] [Google Scholar]
  8. Cummins J. T., Bull R. Spectrophotometric measurements of metabolic responses in isolated rat brain cortex. Biochim Biophys Acta. 1971 Nov 2;253(1):29–38. doi: 10.1016/0005-2728(71)90230-1. [DOI] [PubMed] [Google Scholar]
  9. DUYSENS L. N., AMESZ J. Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near-ultraviolet and visible region. Biochim Biophys Acta. 1957 Apr;24(1):19–26. doi: 10.1016/0006-3002(57)90141-5. [DOI] [PubMed] [Google Scholar]
  10. Jöbsis F. F., O'Connor M., Vitale A., Vreman H. Intracellular redox changes in functioning cerebral cortex. I. Metabolic effects of epileptiform activity. J Neurophysiol. 1971 Sep;34(5):735–749. doi: 10.1152/jn.1971.34.5.735. [DOI] [PubMed] [Google Scholar]
  11. KEESEY J. C., WALLGREN H., MCILWAIN H. THE SODIUM, POTASSIUM AND CHLORIDE OF CEREBRAL TISSUES: MAINTENANCE, CHANGE ON STIMULATION AND SUBSEQUENT RECOVERY. Biochem J. 1965 May;95:289–300. doi: 10.1042/bj0950289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KINI M. M., QUASTEL J. H. Carbohydrate--amino-acid inter-relations in brain cortex in vitro. Nature. 1959 Jul 25;184:252–256. doi: 10.1038/184252a0. [DOI] [PubMed] [Google Scholar]
  13. Kakiuchi S., Rall T. W., McIlwain H. The effect of electrical stimulation upon the accumulation of adenosine 3',5'-phosphate in isolated cerebral tissue. J Neurochem. 1969 Apr;16(4):485–491. doi: 10.1111/j.1471-4159.1969.tb06847.x. [DOI] [PubMed] [Google Scholar]
  14. Kakiuchi S., Rall T. W. Studies on adenosine 3',5'-phosphate in rabbit cerebral cortex. Mol Pharmacol. 1968 Jul;4(4):379–388. [PubMed] [Google Scholar]
  15. Krebs H. A. Rate control of the tricarboxylic acid cycle. Adv Enzyme Regul. 1970;8:335–353. doi: 10.1016/0065-2571(70)90028-2. [DOI] [PubMed] [Google Scholar]
  16. LEBARON F. N. The resynthesis of glycogen by guinea pig cerebral-cortex slices. Biochem J. 1955 Sep;61(1):80–85. doi: 10.1042/bj0610080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LEHNINGER A. L. Phosphorylation coupled to oxidation of dihydrodiphosphopyridine nucleotide. J Biol Chem. 1951 May;190(1):345–359. [PubMed] [Google Scholar]
  18. LOLLEY R. N. THE CALCIUM CONTENT OF ISOLATED CEREBRAL TISSUES AND THEIR STEADY-STATE EXCHANGE OF CALCIUM. J Neurochem. 1963 Sep;10:665–676. doi: 10.1111/j.1471-4159.1963.tb08938.x. [DOI] [PubMed] [Google Scholar]
  19. Landowne D., Ritchie J. M. On the control of glycogenolysis in mammalian nervous tissue by calcium. J Physiol. 1971 Jan;212(2):503–517. doi: 10.1113/jphysiol.1971.sp009338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Landowne D., Ritchie J. M. Optical studies on the kinetics of the sodium pump in mammalian non-myelinated nerve fibres. J Physiol. 1971 Jan;212(2):483–502. doi: 10.1113/jphysiol.1971.sp009337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lehninger A. L. Mitochondria and calcium ion transport. Biochem J. 1970 Sep;119(2):129–138. doi: 10.1042/bj1190129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lipton P. Effects of membrane depolarization on light scattering by cerebral cortical slices. J Physiol. 1973 Jun;231(2):365–383. doi: 10.1113/jphysiol.1973.sp010238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. MCILWAIN H., TRESIZE M. A. The glucose, glycogen and aerobic glycolysis of isolated cerebral tissues. Biochem J. 1956 Jun;63(2):250–257. doi: 10.1042/bj0630250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McILWAIN H. Metabolic response in vitro to electrical stimulation of sections of mammalian brain. Biochem J. 1951 Aug;49(3):382–393. doi: 10.1042/bj0490382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nakazawa S., Quastel J. H. Inhibitory effects of ammonium ions and some amino acids on stimulated brain respiration and cerebral amino acid trasport. Can J Biochem. 1968 Jun;46(6):543–548. doi: 10.1139/o68-084. [DOI] [PubMed] [Google Scholar]
  26. Okamoto K., Quastel J. H. Tetrodotoxin-sensitive uptake of ions and water byslices of rat brain in vitro. Biochem J. 1970 Nov;120(1):37–47. doi: 10.1042/bj1200037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Opler L. A., Makman M. H. Mediation by cyclic AMP of hormone-stimulated glycogenolysis in cultured rat astrocytoma cells. Biochem Biophys Res Commun. 1972 Feb 16;46(3):1140–1145. doi: 10.1016/s0006-291x(72)80093-7. [DOI] [PubMed] [Google Scholar]
  28. Rodríguez-Estrada C. Fluorometric determinations of NADH2 levels in dorsal root ganglion following peripheral nerve stimulation. Brain Res. 1967 Oct;6(2):217–227. doi: 10.1016/0006-8993(67)90192-8. [DOI] [PubMed] [Google Scholar]
  29. Rosenthal M., Jöbsis F. F. Intracellular redox changes in functioning cerebral cortex. II. Effects of direct cortical stimulation. J Neurophysiol. 1971 Sep;34(5):750–762. doi: 10.1152/jn.1971.34.5.750. [DOI] [PubMed] [Google Scholar]
  30. Scholz R., Thurman R. G., Williamson J. R., Chance B., Bücher T. Flavin and pyridine nucleotide oxidation-reduction changes in perfused rat liver. I. Anoxia and subcellular localization of fluorescent flavoproteins. J Biol Chem. 1969 May 10;244(9):2317–2324. [PubMed] [Google Scholar]
  31. Shrago E., Lardy H. A. Paths of carbon in gluconeogenesis and lipogenesis. II. Conversion of precursors to phosphoenolpyruvate in liver cytosol. J Biol Chem. 1966 Feb 10;241(3):663–668. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES