Abstract
1 The mode of action of lithium on electrical activity in the sympathetic ganglia of the bullfrog has been studied by recording extracellular and intracellular potential changes. Changes in nerve conduction and various types of synaptic transmission were studied when sodium ions in the external solution were totally replaced by equimolar concentrations of lithium ions and also when lithium ions were added to the external Ringer solution.
2 Nerve conduction and nicotinic transmission in sympathetic ganglia were completely blocked in sodium-free sucrose solution, but were restored when the preparations were transferred to a sodium-free lithium solution.
3 In the sodium-free lithium solution, the slow excitatory postsynaptic potential (e.p.s.p.) and muscarinic acetylcholine-depolarization were restored while the slow inhibitory postsynaptic potential (i.p.s.p.) and the muscarinic acetylcholine-hyperpolarization were not restored. Furthermore, the early after-discharges were accelerated and the inhibition of after-discharges was eliminated. These results support the hypothetical concept that the slow i.p.s.p. is generated by an activation of the electrogenic sodium pump.
4 In the sodium-free lithium solution, restoration of nerve conduction and synaptic transmission were transient phenomena; both conduction and transmission were gradually blocked when preparations were soaked in the solution for long periods. The blockade appeared to be due to membrane depolarization.
5 When lithium ions (20 mM) were added to the Ringer solution, nicotinic transmission was depressed. The slow e.p.s.p. was also depressed, but less so than the slow i.p.s.p. The early after-discharge was, however, accelerated; presumably due to the marked depression of the slow i.p.s.p. in this solution.
6 Changes in synaptic transmission in Ringer solution containing lithium ions could be explained by membrane depolarization, a reduction of acetylcholine release and a depression of the electrogenic sodium pump.
7 All results obtained in the present experiments could be explained by supposing that lithium ions are able to substitute for sodium ions in passive ionic membrane transport dependent on electrochemical energy but not in active ionic membrane transport dependent on metabolic energy.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armett C. J., Ritchie J. M. On the permeability of mammalian non-myelinated fibres to sodium and to lithium ions. J Physiol. 1963 Jan;165(1):130–140. doi: 10.1113/jphysiol.1963.sp007047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BLACKMAN J. G., GINSBORG B. L., RAY C. Synaptic transmission in the sympathetic ganglion of the frog. J Physiol. 1963 Jul;167:355–373. doi: 10.1113/jphysiol.1963.sp007155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beaugé L. A., Sjodin R. A. The dual effect of lithium ions on sodium efflux in skeletal muscle. J Gen Physiol. 1968 Sep;52(3):408–423. doi: 10.1085/jgp.52.3.408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bjegović M., Randić M. Effect of lithium ions on the release of acetylcholine from the cerebral cortex. Nature. 1971 Apr 30;230(5296):587–588. doi: 10.1038/230587a0. [DOI] [PubMed] [Google Scholar]
- CARMELIET E. E. INFLUENCE OF LITHIUM IONS ON THE TRANSMEMBRANE POTENTIAL AND CATION CONTENT OF CARDIAC CELLS. J Gen Physiol. 1964 Jan;47:501–530. doi: 10.1085/jgp.47.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUXLEY A. F., STAMPFLI R. Effect of potassium and sodium on resting and action potentials of single myelinated nerve fibers. J Physiol. 1951 Feb;112(3-4):496–508. doi: 10.1113/jphysiol.1951.sp004546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEYNES R. D., SWAN R. C. The permeability of frog muscle fibres to lithium ions. J Physiol. 1959 Oct;147:626–638. doi: 10.1113/jphysiol.1959.sp006265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klingman J. D. Effects of lithium ions on the rat superior cervical ganglion. Life Sci. 1966 Feb;5(4):365–373. doi: 10.1016/0024-3205(66)90022-1. [DOI] [PubMed] [Google Scholar]
- Koketsu K. Cholinergic synaptic potentials and the underlying ionic mechasims. Fed Proc. 1969 Jan-Feb;28(1):101–112. [PubMed] [Google Scholar]
- Koketsu K., Nishi S. Characteristics of the slow inhibitory postsynaptic potential of bullfrog sympathetic ganglion cells. Life Sci. 1967 Sep 1;6(17):1827–1836. doi: 10.1016/0024-3205(67)90211-1. [DOI] [PubMed] [Google Scholar]
- Libet B. Generation of slow inhibitory and excitatory postsynaptic potentials. Fed Proc. 1970 Nov-Dec;29(6):1945–1956. [PubMed] [Google Scholar]
- NISHI S., KOKETSU K. Electrical properties and activities of single sympathetic neurons in frogs. J Cell Comp Physiol. 1960 Feb;55:15–30. doi: 10.1002/jcp.1030550104. [DOI] [PubMed] [Google Scholar]
- Nishi S., Koketsu K. Analysis of slow inhibitory postsynaptic potential of bullfrog sympathetic ganglion. J Neurophysiol. 1968 Sep;31(5):717–728. doi: 10.1152/jn.1968.31.5.717. [DOI] [PubMed] [Google Scholar]
- Nishi S., Koketsu K. Early and late after discharges of amphibian sympathetic ganglion cells. J Neurophysiol. 1968 Jan;31(1):109–121. doi: 10.1152/jn.1968.31.1.109. [DOI] [PubMed] [Google Scholar]
- Pappano A. J., Volle R. L. Actions of lithium ions in mammalian sympathetic ganglia. J Pharmacol Exp Ther. 1967 Aug;157(2):346–355. [PubMed] [Google Scholar]
- Pappano A. J., Volle R. L. Lithium's failure to replace sodium in mammalian sympathetic ganglia. Science. 1966 Apr 1;152(3718):85–87. doi: 10.1126/science.152.3718.85. [DOI] [PubMed] [Google Scholar]
- TAKEUCHI A., TAKEUCHI N. Electrical changes in pre- and postsynaptic axons of the giant synapse of Loligo. J Gen Physiol. 1962 Jul;45:1181–1193. doi: 10.1085/jgp.45.6.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yonemura K., Sato M. The resting membrane potential and cation movement in frog muscle fibers after exposure to lithium ions. Jpn J Physiol. 1967 Dec 15;17(6):678–697. doi: 10.2170/jjphysiol.17.678. [DOI] [PubMed] [Google Scholar]
- ZERAHN K. Studies on the active transport of lithium in the isolated frog skin. Acta Physiol Scand. 1955 Aug 19;33(4):347–358. doi: 10.1111/j.1748-1716.1955.tb01214.x. [DOI] [PubMed] [Google Scholar]