Abstract
A computer model representing the pentose cycle, the tricarboxylic acid cycle and glycolysis in slices of lactating rat mammary glands has been constructed. This model is based primarily on the studies, with radioactive chemicals, of Abraham & Chaikoff (1959) [although some of the discrepant data of Katz & Wals (1972) could be accommodated by changing one enzyme activity]. Data obtained by using [1-14C]-, [6-14C]- and [3,4-14C]-glucose were simulated, as well as data obtained by using unlabelled glucose (for which some new experimental data are presented). Much past work on the pentose cycle has been mainly concerned with the division of glucose flow between the pentose cycle and glycolysis, and has relied on the assumption that the system is in steady state (both labelled and unlabelled). This assumption may not apply to lactating rat mammary glands, since the model shows that the percentage flow through the shunt progressively decreased for the first 2h of a 3h experiment, and we were unable to construct a completely steady-state model. The model allows examination of many quantitative features of the system, especially the amount of material passing through key enzymes, some of which appear to be regulated by NADP+ concentrations as proposed by McLean (1960). Supplementary information for this paper has been deposited as Supplementary Publication SUP 50023 at the British Museum (Lending Division) (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1973) 131, 5.
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABRAHAM S., CADY P., CHAIKOFF I. L. Effect of insulin in vitro in pathways of glucose utilization, other than Embden-Meyerhof, in rat mammary gland. J Biol Chem. 1957 Feb;224(2):955–962. [PubMed] [Google Scholar]
- ABRAHAM S., CHAIKOFF I. L. Glycolytic pathways and lipogenesis in mammary glands of lactating and nonlactating normal rats. J Biol Chem. 1959 Sep;234:2246–2253. [PubMed] [Google Scholar]
- Achs M. J., Anderson J. H., Garfinkel D. Gluconeogenesis in rat liver cytosol. I. Computer analysis of experimental data. Comput Biomed Res. 1971 Apr;4(1):65–106. doi: 10.1016/0010-4809(71)90047-4. [DOI] [PubMed] [Google Scholar]
- Baldwin R. L., Milligan L. P. Enzymatic changes associated with the initiation and maintenance of lactation in the rat. J Biol Chem. 1966 May 10;241(9):2058–2066. [PubMed] [Google Scholar]
- Bartley J. C., Abraham S., Chaikoff I. L. Biosynthesis of lactose by mammary gland slices from the lactating rat. J Biol Chem. 1966 Mar 10;241(5):1132–1137. [PubMed] [Google Scholar]
- Dzubow L. M., Garfinkel D. A simulation study of brain compartments. II. Atom-by-atom simulation of the metabolism of specifically labeled glucose and acetate. Brain Res. 1970 Oct 28;23(3):407–417. doi: 10.1016/0006-8993(70)90066-1. [DOI] [PubMed] [Google Scholar]
- FLINK E. B., HASTINGS A. B., LOWRY J. K. Changes in potassium and sodium concentrations in liver slices accompanying incubation in vitro. Am J Physiol. 1950 Dec;163(3):598–604. doi: 10.1152/ajplegacy.1950.163.3.598. [DOI] [PubMed] [Google Scholar]
- GARFINKEL D., HESS B. METABOLIC CONTROL MECHANISMS. VII.A DETAILED COMPUTER MODEL OF THE GLYCOLYTIC PATHWAY IN ASCITES CELLS. J Biol Chem. 1964 Apr;239:971–983. [PubMed] [Google Scholar]
- GLASER L., BROWN D. H. Purification and properties of d-glucose-6-phosphate dehydrogenase. J Biol Chem. 1955 Sep;216(1):67–79. [PubMed] [Google Scholar]
- GLOCK G. E., McLEAN P. Levels of enzymes of the direct oxidative pathway of carbohydrate metabolism in mammalian tissues and tumours. Biochem J. 1954 Jan;56(1):171–175. doi: 10.1042/bj0560171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garfinkel D. A simulation study of mammalian phosphofructokinase. J Biol Chem. 1966 Jan 25;241(2):286–294. [PubMed] [Google Scholar]
- Garfinkel D. A simulation study of the metabolism and compartmentation in brain of glutamate, aspartate, the Krebs cycle, and related metabolites. J Biol Chem. 1966 Sep 10;241(17):3918–3929. [PubMed] [Google Scholar]
- Garfinkel D., Frenkel R. A., Garfinkel L. Simulation of the detailed regulation of glycolysis in a heart supernatant preparation. Comput Biomed Res. 1968 Aug;2(1):68–91. doi: 10.1016/0010-4809(68)90009-8. [DOI] [PubMed] [Google Scholar]
- Greenbaum A. L., Darby F. J. The effect of adrenalectomy on the metabolism of the mammary glands of lactating rats. Biochem J. 1964 May;91(2):307–317. doi: 10.1042/bj0910307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gul B., Dils R. Enzymic changes in rabbit and rat mammary gland during the lactation cycle. Biochem J. 1969 Apr;112(3):293–301. doi: 10.1042/bj1120293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gumaa K. A., Greenbaum A. L., McLean P. Adaptive changes in satellite systems related to lipogenesis in rat and sheep mammary gland and in adipose tissue. Eur J Biochem. 1973 Apr 2;34(1):188–198. doi: 10.1111/j.1432-1033.1973.tb02745.x. [DOI] [PubMed] [Google Scholar]
- Gumaa K. A., McLean P., Greenbaum A. L. Calculation of the intracellular distribution of acetyl CoA and CoA, based on the use of citrate synthase as an equilibrium enzyme. FEBS Lett. 1973 Jan 15;29(2):193–196. doi: 10.1016/0014-5793(73)80559-9. [DOI] [PubMed] [Google Scholar]
- HANSON A., BIORCK G. Glutamic-oxalacetic transaminase in the diagnosis of myocardial infarction. II. Comparison of serum transaminase activity with determinations of serum aldolase, cholesterol, alpha2-globulin, iron, copper and lactic dehydrogenase. Acta Med Scand. 1957 Jun 12;157(6):493–502. [PubMed] [Google Scholar]
- Haut M., Basickes S. A computer program for tracing radioactivity in complex metabolic systems. Comput Biomed Res. 1967 Jul;1(2):139–145. doi: 10.1016/0010-4809(67)90012-2. [DOI] [PubMed] [Google Scholar]
- Heath D. F. The redistribution of carbon label by the reactions involved in glycolysis, gluconeogenesis and the tricarboxylic acid cycle in rat liver. Biochem J. 1968 Nov;110(2):313–335. doi: 10.1042/bj1100313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KATZ J., WOOD H. G. The use of C14O2 yields from glucose-1- and -6-C14 for the evaluation of the pathways of glucose metabolism. J Biol Chem. 1963 Feb;238:517–523. [PubMed] [Google Scholar]
- Katz J., Landau B. R., Bartsch G. E. The pentose cycle, triose phosphate isomerization, and lipogenesis in rat adipose tissue. J Biol Chem. 1966 Feb 10;241(3):727–740. [PubMed] [Google Scholar]
- Katz J., Rognstad R. The labeling of pentose phosphate from glucose-14C and estimation of the rates of transaldolase, transketolase, the contribution of the pentose cycle, and ribose phosphate synthesis. Biochemistry. 1967 Jul;6(7):2227–2247. doi: 10.1021/bi00859a046. [DOI] [PubMed] [Google Scholar]
- Katz J., Wals P. A. Pentose cycle and reducing equivalents in rat mammary-gland slices. Biochem J. 1972 Jul;128(4):879–899. doi: 10.1042/bj1280879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LANDAU B. R., BARTSCH G. E., KATZ J., WOOD H. G. ESTIMATION OF PATHWAY CONTRIBUTIONS TO GLUCOSE METABOLISM AND OF THE RATE OF ISOMERIZATION OF HEXOSE 6-PHOSPHATE. J Biol Chem. 1964 Mar;239:686–696. [PubMed] [Google Scholar]
- LJUNGDAHL L., WOOD H. G., RACKER E., COURI D. Formation of unequally labeled fructose 6-phosphate by an exchange reaction catalyzed by transaldolase. J Biol Chem. 1961 Jun;236:1622–1625. [PubMed] [Google Scholar]
- Landau B. R., Bartsch G. E. Estimations of pathway contributions to glucose metabolism and the transaldolase reactions. J Biol Chem. 1966 Feb 10;241(3):741–749. [PubMed] [Google Scholar]
- Landau B. R., Bartsch G. E., Williams H. R. Estimation of the glucuronic acid pathway contribution to glucose metabolism in adipose tissue and the effect of growth hormone. J Biol Chem. 1966 Feb 10;241(3):750–760. [PubMed] [Google Scholar]
- Landau B. R., Sims E. A. On the existence of two separate pools of glucose 6-phosphate in rat diaphragm. J Biol Chem. 1967 Jan 25;242(2):163–172. [PubMed] [Google Scholar]
- London W. P. A theoretical study of hepatic glycogen metabolism. J Biol Chem. 1966 Jul 10;241(13):3008–3022. [PubMed] [Google Scholar]
- Lowry O. H., Passonneau J. V. Kinetic evidence for multiple binding sites on phosphofructokinase. J Biol Chem. 1966 May 25;241(10):2268–2279. [PubMed] [Google Scholar]
- McLEAN P. Carbohydrate metabolism of mammary tissue. I. Pathways of glucose catabolism in the mammary gland. Biochim Biophys Acta. 1958 Nov;30(2):303–315. doi: 10.1016/0006-3002(58)90055-6. [DOI] [PubMed] [Google Scholar]
- McLEAN P. Carbohydrate metabolism of mammary tissue. II. Levels of oxidised and reduced diphosphopyridine nucleotide and triphosphopyridine nucleotide in the rat mammary gland. Biochim Biophys Acta. 1958 Nov;30(2):316–324. doi: 10.1016/0006-3002(58)90056-8. [DOI] [PubMed] [Google Scholar]
- Novello F., McLean P. The pentose phosphate pathway of glucose metabolism. Measurement of the non-oxidative reactions of the cycle. Biochem J. 1968 May;107(6):775–791. doi: 10.1042/bj1070775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PARR C. W. Inhibition of phosphoglucose isomerase. Nature. 1956 Dec 22;178(4547):1401–1401. doi: 10.1038/1781401a0. [DOI] [PubMed] [Google Scholar]
- PEETERS G., DEBACKERE M., SIERENS R. Etude du cycle oxydatif des hexosemonophosphates dans le tissu mammaire par la méthode de chromatographie sur papier. Arch Int Physiol Biochim. 1957 Apr;65(2):324–336. doi: 10.3109/13813455709067038. [DOI] [PubMed] [Google Scholar]
- SEGAL S., BERMAN M., BLAIR A. The metabolism of variously C14-labeled glucose in man and an estimation of the extent of glucose metabolism by the hexose monophosphate pathway. J Clin Invest. 1961 Jul;40:1263–1279. doi: 10.1172/JCI104356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHAW W. N., STADIE W. C. Two identical Embden-Meyerhof enzyme systems in normal rat diaphragms differing in cytological location and response to insulin. J Biol Chem. 1959 Oct;234:2491–2496. [PubMed] [Google Scholar]
- Taketa K., Pogell B. M. The effect of palmityl coenzyme A on glucose 6-phosphate dehydrogenase and other enzymes. J Biol Chem. 1966 Feb 10;241(3):720–726. [PubMed] [Google Scholar]
- VEITCH F. P. COMPETITIVE SHUNT MECHANISM. Biochim Biophys Acta. 1964 Apr 4;86:21–25. doi: 10.1016/0304-4165(64)90153-9. [DOI] [PubMed] [Google Scholar]
- VENKATARAMAN R., RACKER E. Mechanism of action of transaldolase. I. Crystalization and properties of yeast enzyme. J Biol Chem. 1961 Jul;236:1876–1882. [PubMed] [Google Scholar]
- WANG D. Y., GREENBAUM A. L. Levels and distribution of the acid-soluble ribonucleotides in the mammary glands of pregnant and lactating rats. Biochem J. 1960 Dec;77:552–558. doi: 10.1042/bj0770552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WOOD H. G., KATZ J., LANDAU B. R. ESTIMATION OF PATHWAYS OF CARBOHYDRATE METABOLISM. Biochem Z. 1963;338:809–847. [PubMed] [Google Scholar]
- Wrenn T. R., DeLauder W. R., Bitman J. Rat mammary gland composition during pregnancy and lactation. J Dairy Sci. 1965 Nov;48(11):1517–1521. doi: 10.3168/jds.S0022-0302(65)88509-5. [DOI] [PubMed] [Google Scholar]