Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1969 May;112(5):631–636. doi: 10.1042/bj1120631

Factors affecting the activity of pyruvate kinase of Acetobacter xylinum

Moshe Benziman 1
PMCID: PMC1187766  PMID: 4241738

Abstract

1. Extracts of Acetobacter xylinum were found to contain the glycolytic enzymes involved in the conversion of triose phosphate into pyruvate. Pyruvate kinase had the lowest relative activity. Phosphofructokinase activity was not detected in the extracts. 2. Only slight differences in the activity of pyruvate kinase were observed between cells grown on glucose and those grown on intermediates of the tricarboxylic acid cycle. 3. Pyruvate kinase, partially purified from ultrasonic extracts by ammonium sulphate fractionation, required Mg2+ ions for activity. It was not activated by K+ or NH4+ ions. 4. The plots representing the relationship between initial velocity and phosphoenolpyruvate concentration were sigmoidal, suggesting a co-operative effect for phosphoenolpyruvate. The Hill coefficient (n) for phosphoenolpyruvate was 2. The rate of the reaction changed with increasing ADP concentrations according to normal Michaelis–Menten kinetics. 5. The enzyme was inhibited by ATP (Ki0·9×10−3m). The inhibition was competitive with regard to ADP but not with regard to phosphoenolpyruvate. It was not relieved by excess of Mg2+ ions. 6. The possible relationship of the properties of pyruvate kinase to regulatory mechanisms for controlling gluconeogenesis and carbohydrate oxidation in A. xylinum is discussed.

Full text

PDF
631

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ATKINSON D. E., HATHAWAY J. A., SMITH E. C. KINETICS OF REGULATORY ENZYMES. KINETIC ORDER OF THE YEAST DIPHOSPHOPYRIDINE NUCLEOTIDE ISOCITRATE DEHYDROGENASE REACTION AND A MODEL FOR THE REACTION. J Biol Chem. 1965 Jun;240:2682–2690. [PubMed] [Google Scholar]
  2. BENZIMAN M., ABELIOVITZ A. METABOLISM OF DICARBOXYLIC ACIDS IN ACETOBACTER XYLINUM. J Bacteriol. 1964 Feb;87:270–277. doi: 10.1128/jb.87.2.270-277.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BENZIMAN M., BURGER-RACHAMIMOV H. Synthesis of cellulose from pyruvate by succinate-grown cells of Acetobacter xylinum. J Bacteriol. 1962 Oct;84:625–630. doi: 10.1128/jb.84.4.625-630.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benziman M. Implication of the direct phosphorylation of pyruvate in cellulose synthesis by Aceto-bacter xylinum. Biochem Biophys Res Commun. 1966 Aug 12;24(3):391–394. doi: 10.1016/0006-291x(66)90170-7. [DOI] [PubMed] [Google Scholar]
  5. Benziman M., Levy L. Phosphorylation coupled to malate oxidation in Acetobacter xylinum. Biochem Biophys Res Commun. 1966 Jul 20;24(2):214–217. doi: 10.1016/0006-291x(66)90722-4. [DOI] [PubMed] [Google Scholar]
  6. CHANGEUX J. P. ALLOSTERIC INTERACTIONS INTERPRETED IN TERMS OF QUATERNARY STRUCTURE. Brookhaven Symp Biol. 1964 Dec;17:232–249. [PubMed] [Google Scholar]
  7. Cooper R. A., Kornberg H. L. Net formation of phosphoenolpyruvate from pyruvate by Escherichia coli. Biochim Biophys Acta. 1965 Jul 8;104(2):618–620. doi: 10.1016/0304-4165(65)90374-0. [DOI] [PubMed] [Google Scholar]
  8. Hess B., Haeckel R., Brand K. FDP-activation of yeast pyruvate kinase. Biochem Biophys Res Commun. 1966 Sep 22;24(6):824–831. doi: 10.1016/0006-291x(66)90322-6. [DOI] [PubMed] [Google Scholar]
  9. Hess B., Haeckel R. Interaction between potassium-, ammonium- and fructose-1,6-diphosphate activation of yeast pyruvate kinase. Nature. 1967 May 20;214(5090):848–849. doi: 10.1038/214848a0. [DOI] [PubMed] [Google Scholar]
  10. KORNBERG H. L., MORRIS J. G. THE UTILIZATION OF GLYCOLLATE BY MICROCOCCUS DENITRIFICANS: THE BETA-HYDROXYASPARTATE PATHWAY. Biochem J. 1965 Jun;95:577–586. doi: 10.1042/bj0950577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. KREBS H. A., KORNBERG H. L., BURTON K. A survey of the energy transformations in living matter. Ergeb Physiol. 1957;49:212–298. [PubMed] [Google Scholar]
  12. KREBS H. THE CROONIAN LECTURE, 1963. GLUCONEOGENESIS. Proc R Soc Lond B Biol Sci. 1964 Mar 17;159:545–564. doi: 10.1098/rspb.1964.0019. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. MONOD J., CHANGEUX J. P., JACOB F. Allosteric proteins and cellular control systems. J Mol Biol. 1963 Apr;6:306–329. doi: 10.1016/s0022-2836(63)80091-1. [DOI] [PubMed] [Google Scholar]
  15. Maeba P., Sanwal B. D. The regulation of pyruvate kinase of Escherichia coli by fructose diphosphate and adenylic acid. J Biol Chem. 1968 Jan 25;243(2):448–450. [PubMed] [Google Scholar]
  16. Miller G., Evans H. J. The Influence of Salts on Pyruvate Kinase from Tissues of Higher Plants. Plant Physiol. 1957 Jul;32(4):346–354. doi: 10.1104/pp.32.4.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Newsholme E. A., Gevers W. Control of glycolysis and gluconeogenesis in liver and kidney cortex. Vitam Horm. 1967;25:1–87. doi: 10.1016/s0083-6729(08)60033-3. [DOI] [PubMed] [Google Scholar]
  18. REYNARD A. M., HASS L. F., JACOBSEN D. D., BOYER P. D. The correlation of reaction kinetics and substrate binding with the mechanism of pyruvate kinase. J Biol Chem. 1961 Aug;236:2277–2283. [PubMed] [Google Scholar]
  19. Ruiz-Amil M., De Torrontegui G., Palacián E., Catalina L., Losada M. Properties and function of yeast pyruvate carboxylase. J Biol Chem. 1965 Sep;240(9):3485–3492. [PubMed] [Google Scholar]
  20. SCHRAMM M., GROMET Z., HESTRIN S. Synthesis of cellulose by Acetobacter Xylinum. 3. Substrates and inhibitors. Biochem J. 1957 Dec;67(4):669–679. doi: 10.1042/bj0670669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SCHRAMM M., GROMET Z., HESTRIN S. Synthesis of cellulose by Acetobacter Xylinum. 3. Substrates and inhibitors. Biochem J. 1957 Dec;67(4):669–679. doi: 10.1042/bj0670669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. STADTMAN E. R., LIPMANN F. Acetyl phosphate synthesis by reaction of isopropenyl acetate and phosphoric acid. J Biol Chem. 1950 Aug;185(2):549–551. [PubMed] [Google Scholar]
  23. Weber G., Lea M. A., Convery H. J., Stamm N. B. Regulation of gluconeogenesis and glycolysis: studies of mechanisms controlling enzyme activity. Adv Enzyme Regul. 1967;5:257–300. doi: 10.1016/0065-2571(67)90020-9. [DOI] [PubMed] [Google Scholar]
  24. White G. A., Wang C. H. The dissimilation of glucose and gluconate by Acetobacter xylinum. 1. The origin and the fate of triose phosphate. Biochem J. 1964 Feb;90(2):408–423. doi: 10.1042/bj0900408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wood T. The inhibition of pyruvate kinase by ATP. Biochem Biophys Res Commun. 1968 Jun 10;31(5):779–785. doi: 10.1016/0006-291x(68)90630-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES