Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1969 Nov;64(3):973–980. doi: 10.1073/pnas.64.3.973

A STIMULATION BY CYCLIC 3′,5′-ADENOSINE MONOPHOSPHATE OF AMINO ACID ACTIVATION AND POLYMERIZATION IN RETICULOCYTE HEMOLYSATES*

Martin Malkin 1,, Fritz Lipmann 1
PMCID: PMC223331  PMID: 4313337

Abstract

With reticulocyte supernatant, cyclic 3′,5′-adenosine monophosphate at concentrations of 10-3 to 10-2M causes stimulation of aminoacyl-tRNA synthetases for some, e.g., valine and leucine, but not all, amino acids; it is highest at nonsaturating concentrations of ATP. Similar concentrations of cyclic 3′,5′-adenosine monophosphate are found to stimulate phenylalanine polymerization from phenylalanyl transfer ribonucleic acid on polyuridylic acid-charged reticulocyte ribosomes. The degree of stimulation is highest at low GTP concentrations. It is abolished by addition of phosphoenolpyruvate + pyruvate kinase, which stimulate similarly or more effectively at low GTP levels. Under the conditions of these experiments, cyclic 3′,5′-adenosine monophosphate did not appreciably inhibit GTP hydrolysis.

Full text

PDF
973

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CONWAY T. W., LIPMANN F. CHARACTERIZATION OF A RIBOSOME-LINKED GUANOSINE TRIPHOSPHATASE IN ESCHERICHIA COLI EXTRACTS. Proc Natl Acad Sci U S A. 1964 Dec;52:1462–1469. doi: 10.1073/pnas.52.6.1462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. FERGUSON J. J., Jr PROTEIN SYNTHESIS AND ADRENOCORTICOTROPIN RESPONSIVENESS. J Biol Chem. 1963 Aug;238:2754–2759. [PubMed] [Google Scholar]
  3. FUCHS F., BRIGGS F. N. Direct isolation of a soluble relaxing system from muscle. Biochim Biophys Acta. 1961 Aug 5;51:423–425. doi: 10.1016/0006-3002(61)90200-1. [DOI] [PubMed] [Google Scholar]
  4. Felicetti L., Lipmann F. Comparison of amino acid polymerization factors isolated from rat liver and rabbit reticulocytes. Arch Biochem Biophys. 1968 May;125(2):548–557. doi: 10.1016/0003-9861(68)90613-9. [DOI] [PubMed] [Google Scholar]
  5. GRUNBERG-MANAGO M., ORITZ P. J., OCHOA S. Enzymatic synthesis of nucleic acidlike polynucleotides. Science. 1955 Nov 11;122(3176):907–910. doi: 10.1126/science.122.3176.907. [DOI] [PubMed] [Google Scholar]
  6. Gill G. N., Garren L. D. On the mechanism of action of adrenocorticotropic hormone: the binding of cyclic-3',5'-adenosine monophosphate to an adrenal cortical protein. Proc Natl Acad Sci U S A. 1969 Jun;63(2):512–519. doi: 10.1073/pnas.63.2.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grahame-Smith D. G., Butcher R. W., Ney R. L., Sutherland E. W. Adenosine 3',5'-monophosphate as the intracellular mediator of the action of adrenocorticotropic hormone on the adrenal cortex. J Biol Chem. 1967 Dec 10;242(23):5535–5541. [PubMed] [Google Scholar]
  8. Khairallah E. A., Pitot H. C. 3',5'-Cyclic AMP and the release of polysome-bound proteins in vitro. Biochem Biophys Res Commun. 1967 Nov 17;29(3):269–273. doi: 10.1016/0006-291x(67)90447-0. [DOI] [PubMed] [Google Scholar]
  9. Lissitzky S., Manté S., Attali J. C., Cartouzou G. Action of 3',5'-cyclic adenosinemonophosphate on the protein synthesizing capacity of thyroid polyribosomes in vitro. Biochem Biophys Res Commun. 1969 May 22;35(4):437–443. doi: 10.1016/0006-291x(69)90364-7. [DOI] [PubMed] [Google Scholar]
  10. Malkin M., Lipmann F. Fusidic acid: inhibition of factor T2 in reticulocyte protein synthesis. Science. 1969 Apr 4;164(3875):71–72. doi: 10.1126/science.164.3875.71. [DOI] [PubMed] [Google Scholar]
  11. Mitra K., Mehler A. H. The role of transfer ribonucleic acid in the pyrophsphate exchange reaction of arginine-transfer ribonucleic acid synthetase. J Biol Chem. 1966 Nov 10;241(21):5161–5162. [PubMed] [Google Scholar]
  12. NIRENBERG M., LEDER P. RNA CODEWORDS AND PROTEIN SYNTHESIS. THE EFFECT OF TRINUCLEOTIDES UPON THE BINDING OF SRNA TO RIBOSOMES. Science. 1964 Sep 25;145(3639):1399–1407. doi: 10.1126/science.145.3639.1399. [DOI] [PubMed] [Google Scholar]
  13. Pastan I., Perlman R. L. Stimulation of tryptophanase synthesis in Escherichia coli by cyclic 3',5'-adenosine monophosphate. J Biol Chem. 1969 Apr 25;244(8):2226–2232. [PubMed] [Google Scholar]
  14. Perlman R. L., Pastan I. Regulation of beta-galactosidase synthesis in Escherichia coli by cyclic adenosine 3',5'-monophosphate. J Biol Chem. 1968 Oct 25;243(20):5420–5427. [PubMed] [Google Scholar]
  15. Tao M., Lipmann F. Isolation of adenyl cyclase from Escherichia coli. Proc Natl Acad Sci U S A. 1969 May;63(1):86–92. doi: 10.1073/pnas.63.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Taunton O. D., Roth J., Pastan I. ACTH stimulation of adenyl cyclase in adrenal homogenates. Biochem Biophys Res Commun. 1967 Oct 11;29(1):1–7. doi: 10.1016/0006-291x(67)90531-1. [DOI] [PubMed] [Google Scholar]
  17. Ullmann A., Monod J. Cyclic AMP as an antagonist of catabolite repression in Escherichia coli. FEBS Lett. 1968 Nov;2(1):57–60. doi: 10.1016/0014-5793(68)80100-0. [DOI] [PubMed] [Google Scholar]
  18. WETTSTEIN F. O., STAEHELIN T., NOLL H. Ribosomal aggregate engaged in protein synthesis: characterization of the ergosome. Nature. 1963 Feb 2;197:430–435. doi: 10.1038/197430a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES