Abstract
Recovery from the inhibitory effect of ultraviolet irradiation on the induced synthesis of β-galactosidase was studied in Escherichia coli B/r. When irradiated cells (520 ergs/mm2 at 254 nm) were induced and incubated in minimal medium supplemented with Casamino Acids (conditions of catabolite repression), the ability to form enzyme was greatly reduced for about 100 min and then recovery began. The inhibition observed immediately after ultraviolet irradiation was partially reversed by cyclic 3′,5′-adenosine monophosphate (cyclic AMP) or by photoreactivation treatment. Inhibition was reduced if the cells were given cold treatment (5 C) before or during irradiation; the kinetics of induced enzyme formation in each case were similar to those of irradiated cells receiving cyclic AMP. These kinetics suggest that the cold treatments, like cyclic AMP, cause the release of the β-galactosidase-synthesizing system from catabolite repression. When irradiated cells were incubated for various times before cyclic AMP or photoreactivation treatment, some reversal of the inhibition of induced enzyme formation was obtained, but by 100 min the treatments were ineffective. Because 100 min was also the time at which dark recovery of enzyme formation began, the recovery process was interpreted to be the result of completion of DNA repair, which, in turn, released the β-galactosidase-synthesizing system from catabolite repression.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BOWNE S. W., Jr, ROGERS P. Ultraviolet light and enzyme synthesis. J Mol Biol. 1962 Jul;5:90–96. doi: 10.1016/s0022-2836(62)80064-3. [DOI] [PubMed] [Google Scholar]
- Boyle J. M., Swenson P. A. Loss of the capacity of UV-irradiated Escherichia coli B-r to grow T4D. Virology. 1971 Apr;44(1):37–45. doi: 10.1016/0042-6822(71)90150-4. [DOI] [PubMed] [Google Scholar]
- Emmer M., deCrombrugghe B., Pastan I., Perlman R. Cyclic AMP receptor protein of E. coli: its role in the synthesis of inducible enzymes. Proc Natl Acad Sci U S A. 1970 Jun;66(2):480–487. doi: 10.1073/pnas.66.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eron L., Arditti R., Zubay G., Connaway S., Beckwith J. R. An adenosine 3':5'-cyclic monophosphate-binding protein that acts on the transcription process. Proc Natl Acad Sci U S A. 1971 Jan;68(1):215–218. doi: 10.1073/pnas.68.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamkalo B. A., Swenson P. A. Effects of ultraviolet radiation on respiration and growth in radiation-resistant and radiation-sensitive strains of Escherichia coli B. J Bacteriol. 1969 Sep;99(3):815–823. doi: 10.1128/jb.99.3.815-823.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard-Flanders P. DNA repair. Annu Rev Biochem. 1968;37:175–200. doi: 10.1146/annurev.bi.37.070168.001135. [DOI] [PubMed] [Google Scholar]
- JAGGER J. A small and inexpensive ultraviolet dose-rate meter useful in biological experiements. Radiat Res. 1961 Apr;14:394–403. [PubMed] [Google Scholar]
- JAGGER J., STAFFORD R. S. EVIDENCE FOR TWO MECHANISMS OF PHOTOREACTIVATION IN ESCHERICHIA COLI B. Biophys J. 1965 Jan;5:75–88. doi: 10.1016/s0006-3495(65)86703-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacquet M., Kepes A. The step sensitive to catabolite repression and its reversal by 3'-5' cyclic AMP during induced synthesis of beta-galactosidase in E. coli. Biochem Biophys Res Commun. 1969 Jul 7;36(1):84–92. doi: 10.1016/0006-291x(69)90653-6. [DOI] [PubMed] [Google Scholar]
- KAMEYAMA T., NOVELLI G. D. Effect of ultraviolet inactivation and photoreactivation on the induced synthesis of beta-galactosidase by Escherichia coli. Arch Biochem Biophys. 1962 Jun;97:529–537. doi: 10.1016/0003-9861(62)90117-0. [DOI] [PubMed] [Google Scholar]
- KEPES A. KINETICS OF INDUCED ENZYME SYNTHESIS. DETERMINATION OF THE MEAN LIFE OF GALACTOSIDASE-SPECIFIC MESSENGER RNA. Biochim Biophys Acta. 1963 Oct 15;76:293–309. [PubMed] [Google Scholar]
- MAGASANIK B. Catabolite repression. Cold Spring Harb Symp Quant Biol. 1961;26:249–256. doi: 10.1101/sqb.1961.026.01.031. [DOI] [PubMed] [Google Scholar]
- MAKMAN R. S., SUTHERLAND E. W. ADENOSINE 3',5'-PHOSPHATE IN ESCHERICHIA COLI. J Biol Chem. 1965 Mar;240:1309–1314. [PubMed] [Google Scholar]
- PAIGEN K. CHANGES IN THE INDUCIBILITY OF GALACTOKINASE AND BETA-GALACTOSIDASE DURING INHIBITION OF GROWTH IN ESCHERICHIA COLI. Biochim Biophys Acta. 1963 Oct 1;77:318–328. doi: 10.1016/0006-3002(63)90502-x. [DOI] [PubMed] [Google Scholar]
- PARDEE A. B., PRESTIDGE L. S. INACTIVATION OF BETA-GALACTOSIDASE INDUCTION BY ULTRAVIOLET LIGHT. Biochim Biophys Acta. 1963 Dec 20;76:614–621. [PubMed] [Google Scholar]
- Pardee A. B., Prestidge L. S. Ultraviolet-sensitive targets in the enzyme-synthesizing apparatus of Escherichia coli. J Bacteriol. 1967 Apr;93(4):1210–1219. doi: 10.1128/jb.93.4.1210-1219.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pastan I., Perlman R. L. Stimulation of tryptophanase synthesis in Escherichia coli by cyclic 3',5'-adenosine monophosphate. J Biol Chem. 1969 Apr 25;244(8):2226–2232. [PubMed] [Google Scholar]
- Pastan I., Perlman R. Cyclic adenosine monophosphate in bacteria. Science. 1970 Jul 24;169(3943):339–344. doi: 10.1126/science.169.3943.339. [DOI] [PubMed] [Google Scholar]
- Perlman R. L., De Crombrugghe B., Pastan I. Cyclic AMP regulates catabolite and transient repression in E. coli. Nature. 1969 Aug 23;223(5208):810–812. doi: 10.1038/223810a0. [DOI] [PubMed] [Google Scholar]
- Perlman R. L., Pastan I. Regulation of beta-galactosidase synthesis in Escherichia coli by cyclic adenosine 3',5'-monophosphate. J Biol Chem. 1968 Oct 25;243(20):5420–5427. [PubMed] [Google Scholar]
- Perlman R., Pastan I. Cyclic 3'5-AMP: stimulation of beta-galactosidase and tryptophanase induction in E. coli. Biochem Biophys Res Commun. 1968 Mar 27;30(6):656–664. doi: 10.1016/0006-291x(68)90563-9. [DOI] [PubMed] [Google Scholar]
- SWENSON P. A., SETLOW R. B. BETA-GALACTOSIDASE: INACTIVATION OF ITS MESSENGER RNA BY ULTRAVIOLET IRRADIATION. Science. 1964 Nov 6;146(3645):791–794. doi: 10.1126/science.146.3645.791. [DOI] [PubMed] [Google Scholar]
- Swenson P. A., Schenley R. L. Evidence for the control of respiration by DNA in ultraviolet-irradiated Escherichia coli B-r cells. Mutat Res. 1970 May;9(5):443–453. doi: 10.1016/0027-5107(70)90028-x. [DOI] [PubMed] [Google Scholar]
- Swenson P. A., Schenley R. L. Role of Pyridine Nucleotides in the Control of Respiration in Ultraviolet-Irradiated Escherichia coli B/r Cells. J Bacteriol. 1970 Dec;104(3):1230–1235. doi: 10.1128/jb.104.3.1230-1235.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zubay G., Schwartz D., Beckwith J. Mechanism of activation of catabolite-sensitive genes: a positive control system. Proc Natl Acad Sci U S A. 1970 May;66(1):104–110. doi: 10.1073/pnas.66.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
