Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Apr;69(4):975–979. doi: 10.1073/pnas.69.4.975

Study of Adrenocorticotropic Hormone Conformation by Evaluation of Intramolecular Resonance Energy Transfer in Nε-Dansyllysine21-ACTH-(1-24)-Tetrakosipeptide

Peter W Schiller 1,*
PMCID: PMC426607  PMID: 4337249

Abstract

The solution conformation of ACTH was studied by intramolecular resonance energy transfer and fluorescence depolarization with the synthetic, biologically active, derivative Nε-dansyllysine21-ACTH-(1-24)-tetrakosipeptide. The Förster parameters involved in energy transfer from the donor Trp9 to the dansyl acceptor attached to the side chain of Lys21 were determined from measurements with ACTH fragments containing either the donor or the acceptor alone. From determinations of the fluorescence quantum yields of the donor in the derivative and in the native ACTH-(1-24)-tetrakosipeptide, it was shown that besides energy transfer no additional quenching of the donor fluorescence is introduced by the presence of the acceptor. The short measured rotational relaxation time of the dansyl chromophore reflects the flexibility of the lysine side chain and justifies the use of an average value for the orientation factor in the distance calculations. The calculated intramolecular distance is remarkably independent of solvent, indicating a “random coil” situation with regard to residues 9-21.

Keywords: fluorescence spectra, Förster parameters, side-chain flexibility, intramolecular distances

Full text

PDF
975

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cantor C. R., Pechukas P. Determination of distance distribution functions by singlet-singlet energy transfer. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2099–2101. doi: 10.1073/pnas.68.9.2099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Conrad R. H., Brand L. Intramolecular transfer of excitation from tryptophan to 1-dimethylaminonaphthalene 5-sulfonamide in a series of model compounds. Biochemistry. 1968 Feb;7(2):777–787. doi: 10.1021/bi00842a036. [DOI] [PubMed] [Google Scholar]
  3. Edelhoch H., Lippoldt R. E. Structural studies on polypeptide hormones. I. Fluorescence. J Biol Chem. 1969 Jul 25;244(14):3876–3883. [PubMed] [Google Scholar]
  4. Eisinger J. A variable temperature, U.V. luminescence spectrograph for small samples. Photochem Photobiol. 1969 Mar;9(3):247–258. doi: 10.1111/j.1751-1097.1969.tb07289.x. [DOI] [PubMed] [Google Scholar]
  5. Eisinger J., Feuer B., Lamola A. A. Intramolecular singlet excitation transfer. Applications to polypeptides. Biochemistry. 1969 Oct;8(10):3908–3915. doi: 10.1021/bi00838a005. [DOI] [PubMed] [Google Scholar]
  6. Eisinger J. Intramolecular energy transfer in adrenocorticotropin. Biochemistry. 1969 Oct;8(10):3902–3908. doi: 10.1021/bi00838a004. [DOI] [PubMed] [Google Scholar]
  7. Haugland R. P., Yguerabide J., Stryer L. Dependence of the kinetics of singlet-singlet energy transfer on spectral overlap. Proc Natl Acad Sci U S A. 1969 May;63(1):23–30. doi: 10.1073/pnas.63.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KIELLEY W. W., HARRINGTON W. F. A model for the myosin molecule. Biochim Biophys Acta. 1960 Jul 15;41:401–421. doi: 10.1016/0006-3002(60)90037-8. [DOI] [PubMed] [Google Scholar]
  9. LATT S. A., CHEUNG H. T., BLOUT E. R. ENERGY TRANSFER. A SYSTEM WITH RELATIVELY FIXED DONOR-ACCEPTOR SEPARATION. J Am Chem Soc. 1965 Mar 5;87:995–1003. doi: 10.1021/ja01083a011. [DOI] [PubMed] [Google Scholar]
  10. Lagunoff D., Ottolenghi P. Effect of pH on the fluorescence of dimethylaminonaphthalenesulphonate (DNS) and several derivatives. C R Trav Lab Carlsberg. 1966;35(4):63–83. [PubMed] [Google Scholar]
  11. Parker C. W., Yoo T. J., Johnson M. C., Godt S. M. Fluorescent probes for the study of the antibody-hapten reaction. I. Binding of the 5-dimethylaminonaphthalene-1-sulfonamido group by homologous rabbit antibody. Biochemistry. 1967 Nov;6(11):3408–3416. doi: 10.1021/bi00863a011. [DOI] [PubMed] [Google Scholar]
  12. STRYER L. Intramolecular resonance transfer of energy in proteins. Biochim Biophys Acta. 1959 Sep;35:242–244. doi: 10.1016/0006-3002(59)90355-5. [DOI] [PubMed] [Google Scholar]
  13. Schwyzer R., Schiller P. W. Hormon-Rezeptor-Beziehungen: Synthese und Eigenschaften von N-epsilon-Dansyllysin 21-adrenocorticotropin-(1-24)-tetrakosipeptid. Helv Chim Acta. 1971;54(3):897–904. doi: 10.1002/hlca.19710540313. [DOI] [PubMed] [Google Scholar]
  14. Squire P. G., Bewley T. Adrenocorticotropins. XXXV. The optical rotatory dispersion of sheep adrenocorticotropic hormone in acidic and basic solutions. Biochim Biophys Acta. 1965 Sep 27;109(1):234–240. doi: 10.1016/0926-6585(65)90107-x. [DOI] [PubMed] [Google Scholar]
  15. Stryer L., Haugland R. P. Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci U S A. 1967 Aug;58(2):719–726. doi: 10.1073/pnas.58.2.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. TEALE F. W., WEBER G. Ultraviolet fluorescence of the aromatic amino acids. Biochem J. 1957 Mar;65(3):476–482. doi: 10.1042/bj0650476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Turner G. K. An Absolute Spectrofluorometer: A new instrument has been developed for simple determinations of absolute fluorescence spectra. Science. 1964 Oct 9;146(3641):183–189. doi: 10.1126/science.146.3641.183. [DOI] [PubMed] [Google Scholar]
  18. VERLICK S. F. Fluorescence spectra and polarization of glyceraldehyde-3-phosphate and lactic dehydrogenase coenzyme complexes. J Biol Chem. 1958 Dec;233(6):1455–1467. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES