Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1973 May;134(1):59–67. doi: 10.1042/bj1340059

A comparison of d-inositol 1:2-cyclic phosphate 2-phosphohydrolase with other phosphodiesterases of kidney

R M C Dawson 1, N G Clarke 1
PMCID: PMC1177787  PMID: 4353088

Abstract

1. The ability to hydrolyse various phosphodiesterase substrates was examined in subcellular fractions of rat kidney and in serial slices of the kidneys of mouse, rat, guinea pig and ox cut from the cortex perimeter inwards. 2. d-Inositol 1:2-cyclic phosphate 2-phosphohydrolase could be clearly distinguished from phosphodiesterases which hydrolyse 2′:3′- and 3′:5′-cyclic AMP and p-nitrophenyl thymidine 5′-phosphate (phosphodiesterase I). The hydrolysis of sn-glycero-3-phosphorylcholine showed a distribution identical with that of particle-bound d-inositol 1:2-cyclic phosphate 2-phosphodiesterase, but there was a 30-fold difference in the ratio of enzyme activities between the rat and guinea pig. 3. In rat and mouse kidney, d-inositol 1:2-cyclic phosphate 2-phosphohydrolase is virtually all membrane bound and in the outer cortex, whereas in guinea-pig kidney the enzyme is almost entirely soluble and located throughout the kidney tissue. Some properties of the soluble enzyme are described. 4. Distribution and histochemical studies indicated that in the rat and mouse, phosphodiesterase I is associated with the brush borders of the straight portion (pars recta) of the proximal tubule, whereas inositol 1:2-cyclic phosphate 2-phosphohydrolase and probably glycerylphosphorylcholine diesterase are associated with the brush borders of the convoluted part of the tubule (pars convoluta).

Full text

PDF
59

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin J. J., Cornatzer W. E. Rat kidney glycerylphosphorylcholine diesterase. Biochim Biophys Acta. 1968 Oct 22;164(2):195–204. doi: 10.1016/0005-2760(68)90146-x. [DOI] [PubMed] [Google Scholar]
  2. Baumann G., von Deimling O., Noltenius H. Hormonabhängige Enzymverteilung in Geweben. II. Histochemische Untersuchungen an Nierenphosphatasen erwachsener Ratten. Histochemie. 1964 Jul 17;4(2):150–160. doi: 10.1007/BF00306156. [DOI] [PubMed] [Google Scholar]
  3. Breckenridge B. M., Johnston R. E. Cyclic 3',5'-nucleotide phosphodiesterase in brain. J Histochem Cytochem. 1969 Aug;17(8):505–511. doi: 10.1177/17.8.505. [DOI] [PubMed] [Google Scholar]
  4. Clarke N., Dawson R. M. Localization of D-myoinositol 1:2-cyclic phosphate 2-phosphohydrolase in rat kidney. Biochem J. 1972 Nov;130(1):229–238. doi: 10.1042/bj1300229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DAWSON R. M. Liver glycerylphosphorylcholine diesterase. Biochem J. 1956 Apr;62(4):689–693. doi: 10.1042/bj0620689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dawson R. M., Clarke N. D-myoinositol 1:2-cyclic phosphate 2-phosphohydrolase. Biochem J. 1972 Mar;127(1):113–118. doi: 10.1042/bj1270113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dawson R. M., Freinkel N., Jungalwala F. B., Clarke N. The enzymic formation of myoinositol 1:2-cyclic phosphate from phosphatidylinositol. Biochem J. 1971 May;122(4):605–607. doi: 10.1042/bj1220605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dousa T., Rychlík I. The metabolism of adenosine 3',5'-cyclic phosphate. II. Some properties of adenosine-3',5'-cyclic-phosphate phosphodiesterase from the rat kidney. Biochim Biophys Acta. 1970 Mar 19;204(1):10–17. doi: 10.1016/0005-2787(70)90485-5. [DOI] [PubMed] [Google Scholar]
  9. Erecińska M., Sierakowska H., Shugar D. Intracellular localization of phosphodiesterases I and II in rat liver. Eur J Biochem. 1969 Dec;11(3):465–471. doi: 10.1111/j.1432-1033.1969.tb00796.x. [DOI] [PubMed] [Google Scholar]
  10. Fowler S., De Duve C. Digestive activity of lysosomes. 3. The digestion of lipids by extracts of rat liver lysosomes. J Biol Chem. 1969 Jan 25;244(2):471–481. [PubMed] [Google Scholar]
  11. HUEBSCHER G., WEST G. R. SPECIFIC ASSAYS OF SOME PHOSPHATASES IN SUBCELLULAR FRACTIONS OF SMALL INTESTINAL MUCOSA. Nature. 1965 Feb 20;205:799–800. doi: 10.1038/205799a0. [DOI] [PubMed] [Google Scholar]
  12. Hardonk M. J., Koudstaal J. 5'-nucleotidase. IV. Localization of 5'-nucleotidase and alkaline phosphatase isoenzymes in the kidney of young and adult mice. Histochemie. 1968;15(4):290–299. [PubMed] [Google Scholar]
  13. Jard S., Bernard M. Presence of two 3'-5'-cyclic AMP phosphodiesterases in rat kidney and frog bladder epithelial cells extracts. Biochem Biophys Res Commun. 1970 Nov 9;41(3):781–788. doi: 10.1016/0006-291x(70)90081-1. [DOI] [PubMed] [Google Scholar]
  14. LONGLEY J. B., FISHER E. R. Alkaline phosphatase and the periodic acid Schiff reaction in the proximal tubule of the vertebrate kidney; a study in segmental differentiation. Anat Rec. 1954 Sep;120(1):1–21. doi: 10.1002/ar.1091200102. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Lloyd-Davies K. A., Michell R. H., Coleman R. Glycerylphosphorylcholine phosphodiesterase in rat liver. Subcellular distribution and localization in plasma membranes. Biochem J. 1972 Apr;127(2):357–368. doi: 10.1042/bj1270357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Maunsbach A. B. Observations on the segmentation of the proximal tubule in the rat kidney. Comparison of results from phase contrast, fluorescence and electron microscopy. J Ultrastruct Res. 1966 Oct;16(3):239–258. doi: 10.1016/s0022-5320(66)80060-6. [DOI] [PubMed] [Google Scholar]
  18. Olafson R. W., Drummond G. I., Lee J. F. Studies on 2',3'-cyclic nucleotide-3'-phosphohydrolase from brain. Can J Biochem. 1969 Oct;47(10):961–966. doi: 10.1139/o69-151. [DOI] [PubMed] [Google Scholar]
  19. RAZZELL W. E. Partial purification and properties of phosphodiesterase I from hog kidney. J Biol Chem. 1961 Nov;236:3031–3036. [PubMed] [Google Scholar]
  20. RAZZELL W. E. Tissue and intracellular distribution of two phosphodiesterases. J Biol Chem. 1961 Nov;236:3028–3030. [PubMed] [Google Scholar]
  21. Schmidt U., Dubach U. C. Differential enzymatic behaviour of single proximal segments of the superficial and juxtamedullary nephron. I. Alkaline phosphatase, (Mg++) ATPase and Na+K+) ATPase. Z Gesamte Exp Med. 1969;151(2):93–102. doi: 10.1007/BF02044665. [DOI] [PubMed] [Google Scholar]
  22. Shanta T. R., Woods W. D., Waitzman M. B., Bourne G. H. Histochemical method for localization of cyclic 3',5'-nucleotide phosphodiesterase. Histochemie. 1966;7(2):177–190. doi: 10.1007/BF00309721. [DOI] [PubMed] [Google Scholar]
  23. VON DEIMLING, NOLTENIUS H. HORMONABHAENGIGE ENZYMVERTEILUNG IN GEWEBEN. I. HISTOCHEMISCHE UNTERSUCHUNGEN UEBER DIE GESCHLECHTSUNTERSCHIEDE DER ALKALISCHEN NIERENPHOSPHATASE BEI ERWACHSENEN RATTEN. Z Zellforch Microsk Anat Histochem. 1964 Apr 10;78:500–508. [PubMed] [Google Scholar]
  24. Vessey D. A., Zakim D. Regulation of microsomal enzymes by phospholipids. V. Kinetic studies of hepatic uridine diphosphate-glucuronyltransferase. J Biol Chem. 1972 May 25;247(10):3023–3028. [PubMed] [Google Scholar]
  25. Wilfong R. F., Neville D. M., Jr The isolation of a brush border membrane fraction from rat kidney. J Biol Chem. 1970 Nov 25;245(22):6106–6112. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES