Abstract
The modified adenine nucleotides ATP-NO, ADP-NO, and AMP-NO were tested as potential substrates and/or inhibitors of mitochondrial phosphotransferases. ADP-NO is not recognized by the translocase system located in the inner mitochondrial membrane; however, it is rapidly phosphorylated to ATP-NO in the outer compartment of mitochondria, by way of the nucleosidediphosphate kinase (EC 2.7.4.6) reaction, provided there is sufficient ATP in the mitochondria. AMP-NO is not phosphorylated by liver mitochondria to the corresponding nucleoside diphosphate; it cannot serve as substrate for adenylate kinase (EC 2.7.4.3). ATP-NO and ADP-NO, however, are substrates of this enzyme. The apparent equilibrium constant for the reaction, ADP-NO + ADP ⇌ ATP-NO + AMP, of 0.908 at pH 7.4 and 5 mM Mg2+ is significantly higher than that of the reaction with natural nucleotides.
Although adenosine N1-oxide is easily phosphorylated to AMP-NO by adenosine kinase [Schnebli et al. (1967) J. Biol. Chem. 242, 1997-2004], the formation of corresponding nucleoside triphosphate in vivo seems also to be limited by adenylate kinase; adenosine N1-oxide cannot replace adenosine in restoring the normal ATP level in ethionine-treated rats.
Keywords: oxidative phosphorylation, adenine nucleotide N1-oxides, substrate specificity, in vivo phosphorylation
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adelman R. C., Lo C. H., Weinhouse S. Dietary and hormonal effects on adenosine triphosphate: adenosine monophosphate phosphotransferase activity in rat liver. J Biol Chem. 1968 May 25;243(10):2538–2544. [PubMed] [Google Scholar]
- BROWN G. B., CLARKE D. A., BIESELE J. J., KAPLAN L., STEVENS M. A. Purine N-oxides. III. Some biological activities of adenine 1-N-oxide derivatives. J Biol Chem. 1958 Dec;233(6):1509–1512. [PubMed] [Google Scholar]
- Bârzu O., Mureşan L., Tărmure C. Spectrophotometric method for assay of mitochondrial oxygen uptake. II. Simultaneous determination of mitochondrial swelling, respiration, and phosphate esterification. Anal Biochem. 1968 Aug;24(2):249–258. doi: 10.1016/0003-2697(68)90178-4. [DOI] [PubMed] [Google Scholar]
- Criss W. E., Sapico V., Litwack G. Rat liver adenosine triphosphate: adenosine monophosphate phosphotransferase activity. I. Purification and physical and kinetic characterization of adenylate kinase 3. J Biol Chem. 1970 Dec 10;245(23):6346–6351. [PubMed] [Google Scholar]
- Duée E. D., Vignais P. V. Atracyloside-sensitive translocation of phosphonic acid analogues of adenine nucleotides in mitochondria. Biochem Biophys Res Commun. 1968 Mar 12;30(5):546–553. doi: 10.1016/0006-291x(68)90087-9. [DOI] [PubMed] [Google Scholar]
- Frederiksen S., Rasmussen A. H. Effect of the N1-oxides of adenosine, 2'-deoxyadenosine, and 3'-deoxyadenosine on tumor growth in vivo. Cancer Res. 1967 Feb;27(2):385–391. [PubMed] [Google Scholar]
- Goffeau A., Pedersen P. L., Lehninger A. L. The kinetics and inhibition of the adenosine diphosphate-adenosine triphosphate exchange catalyzed by purified mitochondrial nucleoside diphosphokinase. J Biol Chem. 1967 Apr 25;242(8):1845–1853. [PubMed] [Google Scholar]
- Heldt H. W., Schwalbach K. The participation of GTP-AMP-P transferase in substrate level phosphate transfer of rat liver mitochondria. Eur J Biochem. 1967 Apr;1(2):199–206. doi: 10.1007/978-3-662-25813-2_31. [DOI] [PubMed] [Google Scholar]
- Hohnadel D. C., Cooper C. A comparison of the nucleotide specificity and atractyloside sensitivity of digitonin and sonic particles. Biochemistry. 1972 Mar 28;11(7):1138–1144. doi: 10.1021/bi00757a004. [DOI] [PubMed] [Google Scholar]
- Hoppel C., Cooper C. Studies on the nucleotide specificity of mitochondrial inner membrane particles. Arch Biochem Biophys. 1969 Dec;135(1):184–193. doi: 10.1016/0003-9861(69)90529-3. [DOI] [PubMed] [Google Scholar]
- Jacobus W. E., Lehninger A. L. Creatine kinase of rat heart mitochondria. Coupling of creatine phosphorylation to electron transport. J Biol Chem. 1973 Jul 10;248(13):4803–4810. [PubMed] [Google Scholar]
- Kezdi M., Mantsch H., Mureşan L., Tărmure C., Bărzu O. Involvement of N1-oxide derivatives of adenine nucleotides in the reactions of the oxidative phosphorylation. FEBS Lett. 1973 Jun 15;33(1):33–36. doi: 10.1016/0014-5793(73)80152-8. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lima M. S., Nachbaur G., Vignais P. Localisation de la nucléoside diphosphate kinase, de l'adénylate kinase et de la GTP-AMP phosphotransférase dans les mitochondries de foie. C R Acad Sci Hebd Seances Acad Sci D. 1968 Feb 12;266(7):739–742. [PubMed] [Google Scholar]
- Markland F. S., Wadkins C. L. Adenosine triphosphate-adenosine 5'-monophosphate phosphotransferase of bovine liver mitochondria. II. General kinetic and structural properties. J Biol Chem. 1966 Sep 25;241(18):4136–4145. [PubMed] [Google Scholar]
- McCormick D. B. Syntheses, characterizations, and biochemical reactivities of 1-N-oxides of 5'-adenylic and 5'-inosinic acids. Biochemistry. 1966 Feb;5(2):746–751. doi: 10.1021/bi00866a048. [DOI] [PubMed] [Google Scholar]
- NODA L. Adenosine triphosphate-adenosine monophosphate transphosphorylase. III. Kinetic studies. J Biol Chem. 1958 May;232(1):237–250. [PubMed] [Google Scholar]
- Pedersen P. L. Coupling of adenosine triphosphate formation in mitochondria to the formation of nucleoside triphosphates. Involvement of nucleoside diphosphokinase. J Biol Chem. 1973 Jun 10;248(11):3956–3962. [PubMed] [Google Scholar]
- RANDERATH K. Thin-layer chromatography of nucleotides on layers of cellulose ion-exchangers. Nature. 1962 May 26;194:768–769. doi: 10.1038/194768b0. [DOI] [PubMed] [Google Scholar]
- Schlimme E., Schäfer G. Properties of ADP- and ATP-1-N-oxide in the adenine nucleotide translocation in rat liver mitochondria. FEBS Lett. 1972 Feb 15;20(3):359–363. doi: 10.1016/0014-5793(72)80107-8. [DOI] [PubMed] [Google Scholar]
- Schnebli H. P., Hill D. L., Bennett L. L., Jr Purification and properties of adenosine kinase from human tumor cells of type H. Ep. No. 2. J Biol Chem. 1967 May 10;242(9):1997–2004. [PubMed] [Google Scholar]
- Silva Lima M., Vignais P. V. Localisation et fonction de la GTP-AMP phosphotransférase dans les mitochondries de foie de rat. Bull Soc Chim Biol (Paris) 1969 Jan 30;50(10):1833–1848. [PubMed] [Google Scholar]
- Stöhrer G., Brown G. B. Purine N-oxides. 28. The reduction of purine N-oxides by xanthine oxidase. J Biol Chem. 1969 May 10;244(9):2498–2502. [PubMed] [Google Scholar]
- Stöhrer G., Brown G. B. Purine N-oxides. XXVII. The metabolism of guanine 3-oxide by the rat. J Biol Chem. 1969 May 10;244(9):2494–2497. [PubMed] [Google Scholar]
- Su S., Russell P. J. Adenylate kinase from baker's yeast. II. Substrate specificity. Biochim Biophys Acta. 1967 Mar 15;132(2):370–378. doi: 10.1016/0005-2744(67)90156-8. [DOI] [PubMed] [Google Scholar]
- VILLA-TREVINO S., SHULL K. H., FARBER E. The role of adenosine triphosphate deficiency in ethionine-induced inhibition of protein synthesis. J Biol Chem. 1963 May;238:1757–1763. [PubMed] [Google Scholar]
- Vignais P. V., Duée E. D., Colomb M., Reboul A., Cheruy A., Bârzu O., Vignais P. M. Transfert d'adénine-nucléotides a travers les membranes mitochondriales au cours de la phosphorylation oxydative. Bull Soc Chim Biol (Paris) 1970 Jun;52(5):471–497. [PubMed] [Google Scholar]
- Weidemann M. J., Erdelt H., Klingenberg M. Adenine nucleotide translocation of mitochondria. Identification of carrier sites. Eur J Biochem. 1970 Oct;16(2):313–335. doi: 10.1111/j.1432-1033.1970.tb01086.x. [DOI] [PubMed] [Google Scholar]