Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Nov;71(11):4630–4634. doi: 10.1073/pnas.71.11.4630

Participation of N1-Oxide derivatives of Adenine Nucleotides in the Phosphotransferase Activity of Liver Mitochondria

G Jebeleanu 1, N G Ty 1, H H Mantsch *, O Bârzu 1, G Niac , I Abrudan 1
PMCID: PMC433942  PMID: 4373722

Abstract

The modified adenine nucleotides ATP-NO, ADP-NO, and AMP-NO were tested as potential substrates and/or inhibitors of mitochondrial phosphotransferases. ADP-NO is not recognized by the translocase system located in the inner mitochondrial membrane; however, it is rapidly phosphorylated to ATP-NO in the outer compartment of mitochondria, by way of the nucleosidediphosphate kinase (EC 2.7.4.6) reaction, provided there is sufficient ATP in the mitochondria. AMP-NO is not phosphorylated by liver mitochondria to the corresponding nucleoside diphosphate; it cannot serve as substrate for adenylate kinase (EC 2.7.4.3). ATP-NO and ADP-NO, however, are substrates of this enzyme. The apparent equilibrium constant for the reaction, ADP-NO + ADP ⇌ ATP-NO + AMP, of 0.908 at pH 7.4 and 5 mM Mg2+ is significantly higher than that of the reaction with natural nucleotides.

Although adenosine N1-oxide is easily phosphorylated to AMP-NO by adenosine kinase [Schnebli et al. (1967) J. Biol. Chem. 242, 1997-2004], the formation of corresponding nucleoside triphosphate in vivo seems also to be limited by adenylate kinase; adenosine N1-oxide cannot replace adenosine in restoring the normal ATP level in ethionine-treated rats.

Keywords: oxidative phosphorylation, adenine nucleotide N1-oxides, substrate specificity, in vivo phosphorylation

Full text

PDF
4630

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman R. C., Lo C. H., Weinhouse S. Dietary and hormonal effects on adenosine triphosphate: adenosine monophosphate phosphotransferase activity in rat liver. J Biol Chem. 1968 May 25;243(10):2538–2544. [PubMed] [Google Scholar]
  2. BROWN G. B., CLARKE D. A., BIESELE J. J., KAPLAN L., STEVENS M. A. Purine N-oxides. III. Some biological activities of adenine 1-N-oxide derivatives. J Biol Chem. 1958 Dec;233(6):1509–1512. [PubMed] [Google Scholar]
  3. Bârzu O., Mureşan L., Tărmure C. Spectrophotometric method for assay of mitochondrial oxygen uptake. II. Simultaneous determination of mitochondrial swelling, respiration, and phosphate esterification. Anal Biochem. 1968 Aug;24(2):249–258. doi: 10.1016/0003-2697(68)90178-4. [DOI] [PubMed] [Google Scholar]
  4. Criss W. E., Sapico V., Litwack G. Rat liver adenosine triphosphate: adenosine monophosphate phosphotransferase activity. I. Purification and physical and kinetic characterization of adenylate kinase 3. J Biol Chem. 1970 Dec 10;245(23):6346–6351. [PubMed] [Google Scholar]
  5. Duée E. D., Vignais P. V. Atracyloside-sensitive translocation of phosphonic acid analogues of adenine nucleotides in mitochondria. Biochem Biophys Res Commun. 1968 Mar 12;30(5):546–553. doi: 10.1016/0006-291x(68)90087-9. [DOI] [PubMed] [Google Scholar]
  6. Frederiksen S., Rasmussen A. H. Effect of the N1-oxides of adenosine, 2'-deoxyadenosine, and 3'-deoxyadenosine on tumor growth in vivo. Cancer Res. 1967 Feb;27(2):385–391. [PubMed] [Google Scholar]
  7. Goffeau A., Pedersen P. L., Lehninger A. L. The kinetics and inhibition of the adenosine diphosphate-adenosine triphosphate exchange catalyzed by purified mitochondrial nucleoside diphosphokinase. J Biol Chem. 1967 Apr 25;242(8):1845–1853. [PubMed] [Google Scholar]
  8. Heldt H. W., Schwalbach K. The participation of GTP-AMP-P transferase in substrate level phosphate transfer of rat liver mitochondria. Eur J Biochem. 1967 Apr;1(2):199–206. doi: 10.1007/978-3-662-25813-2_31. [DOI] [PubMed] [Google Scholar]
  9. Hohnadel D. C., Cooper C. A comparison of the nucleotide specificity and atractyloside sensitivity of digitonin and sonic particles. Biochemistry. 1972 Mar 28;11(7):1138–1144. doi: 10.1021/bi00757a004. [DOI] [PubMed] [Google Scholar]
  10. Hoppel C., Cooper C. Studies on the nucleotide specificity of mitochondrial inner membrane particles. Arch Biochem Biophys. 1969 Dec;135(1):184–193. doi: 10.1016/0003-9861(69)90529-3. [DOI] [PubMed] [Google Scholar]
  11. Jacobus W. E., Lehninger A. L. Creatine kinase of rat heart mitochondria. Coupling of creatine phosphorylation to electron transport. J Biol Chem. 1973 Jul 10;248(13):4803–4810. [PubMed] [Google Scholar]
  12. Kezdi M., Mantsch H., Mureşan L., Tărmure C., Bărzu O. Involvement of N1-oxide derivatives of adenine nucleotides in the reactions of the oxidative phosphorylation. FEBS Lett. 1973 Jun 15;33(1):33–36. doi: 10.1016/0014-5793(73)80152-8. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lima M. S., Nachbaur G., Vignais P. Localisation de la nucléoside diphosphate kinase, de l'adénylate kinase et de la GTP-AMP phosphotransférase dans les mitochondries de foie. C R Acad Sci Hebd Seances Acad Sci D. 1968 Feb 12;266(7):739–742. [PubMed] [Google Scholar]
  15. Markland F. S., Wadkins C. L. Adenosine triphosphate-adenosine 5'-monophosphate phosphotransferase of bovine liver mitochondria. II. General kinetic and structural properties. J Biol Chem. 1966 Sep 25;241(18):4136–4145. [PubMed] [Google Scholar]
  16. McCormick D. B. Syntheses, characterizations, and biochemical reactivities of 1-N-oxides of 5'-adenylic and 5'-inosinic acids. Biochemistry. 1966 Feb;5(2):746–751. doi: 10.1021/bi00866a048. [DOI] [PubMed] [Google Scholar]
  17. NODA L. Adenosine triphosphate-adenosine monophosphate transphosphorylase. III. Kinetic studies. J Biol Chem. 1958 May;232(1):237–250. [PubMed] [Google Scholar]
  18. Pedersen P. L. Coupling of adenosine triphosphate formation in mitochondria to the formation of nucleoside triphosphates. Involvement of nucleoside diphosphokinase. J Biol Chem. 1973 Jun 10;248(11):3956–3962. [PubMed] [Google Scholar]
  19. RANDERATH K. Thin-layer chromatography of nucleotides on layers of cellulose ion-exchangers. Nature. 1962 May 26;194:768–769. doi: 10.1038/194768b0. [DOI] [PubMed] [Google Scholar]
  20. Schlimme E., Schäfer G. Properties of ADP- and ATP-1-N-oxide in the adenine nucleotide translocation in rat liver mitochondria. FEBS Lett. 1972 Feb 15;20(3):359–363. doi: 10.1016/0014-5793(72)80107-8. [DOI] [PubMed] [Google Scholar]
  21. Schnebli H. P., Hill D. L., Bennett L. L., Jr Purification and properties of adenosine kinase from human tumor cells of type H. Ep. No. 2. J Biol Chem. 1967 May 10;242(9):1997–2004. [PubMed] [Google Scholar]
  22. Silva Lima M., Vignais P. V. Localisation et fonction de la GTP-AMP phosphotransférase dans les mitochondries de foie de rat. Bull Soc Chim Biol (Paris) 1969 Jan 30;50(10):1833–1848. [PubMed] [Google Scholar]
  23. Stöhrer G., Brown G. B. Purine N-oxides. 28. The reduction of purine N-oxides by xanthine oxidase. J Biol Chem. 1969 May 10;244(9):2498–2502. [PubMed] [Google Scholar]
  24. Stöhrer G., Brown G. B. Purine N-oxides. XXVII. The metabolism of guanine 3-oxide by the rat. J Biol Chem. 1969 May 10;244(9):2494–2497. [PubMed] [Google Scholar]
  25. Su S., Russell P. J. Adenylate kinase from baker's yeast. II. Substrate specificity. Biochim Biophys Acta. 1967 Mar 15;132(2):370–378. doi: 10.1016/0005-2744(67)90156-8. [DOI] [PubMed] [Google Scholar]
  26. VILLA-TREVINO S., SHULL K. H., FARBER E. The role of adenosine triphosphate deficiency in ethionine-induced inhibition of protein synthesis. J Biol Chem. 1963 May;238:1757–1763. [PubMed] [Google Scholar]
  27. Vignais P. V., Duée E. D., Colomb M., Reboul A., Cheruy A., Bârzu O., Vignais P. M. Transfert d'adénine-nucléotides a travers les membranes mitochondriales au cours de la phosphorylation oxydative. Bull Soc Chim Biol (Paris) 1970 Jun;52(5):471–497. [PubMed] [Google Scholar]
  28. Weidemann M. J., Erdelt H., Klingenberg M. Adenine nucleotide translocation of mitochondria. Identification of carrier sites. Eur J Biochem. 1970 Oct;16(2):313–335. doi: 10.1111/j.1432-1033.1970.tb01086.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES