Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1972 Sep;10(3):392–398. doi: 10.1128/jvi.10.3.392-398.1972

Filamentous Bacterial Viruses VII. Inhibition of fd Deoxyribonucleic Acid Synthesis After a Temperature Jump into Protein-Synthesis Inhibitors

B Y Tseng 1, D A Marvin 1
PMCID: PMC356478  PMID: 4561206

Abstract

Synthesis of fd deoxyribonucleic acid (DNA) was stopped by transferring infected bacteria from 32 C into chloramphenicol or serine hydroxamate at 42 C, but not by addition of these antibiotics at 32 C, and not by a temperature change in the absence of antibiotics. The inhibition of fd DNA synthesis by serine hydroxamate at 42 C was reversed by excess serine. The ability to synthesize fd DNA at 42 C in chloramphenicol was rescued by delaying the addition of chloramphenicol for a few minutes after the transfer from 32 to 42 C. The colony-forming ability of abortively infected bacteria was also rescued from “killing” by delaying the addition of chloramphenicol after a transfer from 32 to 42 C.

Full text

PDF
392

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberts B., Frey L., Delius H. Isolation and characterization of gene 5 protein of filamentous bacterial viruses. J Mol Biol. 1972 Jul 14;68(1):139–152. doi: 10.1016/0022-2836(72)90269-0. [DOI] [PubMed] [Google Scholar]
  2. Amati P. Chloramphenical: effect on DNA synthesis during phage development in Escherichia coli. Science. 1970 Jun 5;168(3936):1226–1228. doi: 10.1126/science.168.3936.1226. [DOI] [PubMed] [Google Scholar]
  3. Brutlag D., Schekman R., Kornberg A. A possible role for RNA polymerase in the initiation of M13 DNA synthesis. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2826–2829. doi: 10.1073/pnas.68.11.2826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen J. H., Weissman S. M., Lengyel P. RG + GENE DEPENDENT INHIBITION OF RNA synthesis without ppGpp accumulation. Biochem Biophys Res Commun. 1972 Jan 31;46(2):785–789. doi: 10.1016/s0006-291x(72)80209-2. [DOI] [PubMed] [Google Scholar]
  5. Cooper S., Weusthoff G. Comment on the use of chloramphenicol to study the initiation of deoxyribonucleic acid synthesis. J Bacteriol. 1971 May;106(2):709–711. doi: 10.1128/jb.106.2.709-711.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Donini P. Amino acid control over deoxyribonucleic acid synthesis in Escherichia coli infected with T-even bacteriophage. J Bacteriol. 1970 Jun;102(3):616–627. doi: 10.1128/jb.102.3.616-627.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edlin G., Broda P. Physiology and genetics of the "ribonucleic acid control" locus in escherichia coli. Bacteriol Rev. 1968 Sep;32(3):206–226. doi: 10.1128/br.32.3.206-226.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Garen A., Garen S., Wilhelm R. C. Suppressor genes for nonsense mutations. I. The Su-1, Su-2 and Su-3 genes of Escherichia coli. J Mol Biol. 1965 Nov;14(1):167–178. doi: 10.1016/s0022-2836(65)80238-8. [DOI] [PubMed] [Google Scholar]
  9. Godson G. N. Phi X gene expression in UV-irradiated cells treated with chloramphenicol. Virology. 1971 Sep;45(3):788–792. doi: 10.1016/0042-6822(71)90196-6. [DOI] [PubMed] [Google Scholar]
  10. Gurgo C., Apirion D., Schlessinger D. Polyribosome metabolism in Escherichia coli treated with chloramphenicol, neomycin, spectinomycin or tetracycline. J Mol Biol. 1969 Oct 28;45(2):205–220. doi: 10.1016/0022-2836(69)90100-4. [DOI] [PubMed] [Google Scholar]
  11. Guthrie G. D. Translational regulation of T4 messenger RNA metabolism. Biochim Biophys Acta. 1971 Mar 11;232(2):324–337. doi: 10.1016/0005-2787(71)90585-5. [DOI] [PubMed] [Google Scholar]
  12. Hohn B., Lechner H., Marvin D. A. Filamentous bacterial viruses. I. DNA synthesis during the early stages of infection with fd. J Mol Biol. 1971 Feb 28;56(1):143–154. doi: 10.1016/0022-2836(71)90090-8. [DOI] [PubMed] [Google Scholar]
  13. Hohn B., von Schütz H., Marvin D. A. Filamentous bacterial viruses. II. Killing of bacteria by abortive infection with fd. J Mol Biol. 1971 Feb 28;56(1):155–165. doi: 10.1016/0022-2836(71)90091-x. [DOI] [PubMed] [Google Scholar]
  14. Lark K. G. Initiation and control of DNA synthesis. Annu Rev Biochem. 1969;38:569–604. doi: 10.1146/annurev.bi.38.070169.003033. [DOI] [PubMed] [Google Scholar]
  15. Lazzarini R. A., Cashel M., Gallant J. On the regulation of guanosine tetraphosphate levels in stringent and relaxed strains of Escherichia coli. J Biol Chem. 1971 Jul 25;246(14):4381–4385. [PubMed] [Google Scholar]
  16. Levine A. J., Sinsheimer R. L. The process of infection with bacteriophage phiX174. XXVII. Synthesis of a viral-specific chloramphenicol-resistant protein in phiX174-infected cells. J Mol Biol. 1969 Feb 14;39(3):655–668. doi: 10.1016/0022-2836(69)90151-x. [DOI] [PubMed] [Google Scholar]
  17. Lindqvist B. H., Sinsheimer R. L. The process of infection with bacteriophage phi-X174. XV. Bacteriophage DNA synthesis in abortive infections with a set of conditional lethal mutants. J Mol Biol. 1967 Nov 28;30(1):69–80. doi: 10.1016/0022-2836(67)90244-6. [DOI] [PubMed] [Google Scholar]
  18. Marvin D. A., Hohn B. Filamentous bacterial viruses. Bacteriol Rev. 1969 Jun;33(2):172–209. doi: 10.1128/br.33.2.172-209.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Patterson D., Gillespie D. Stringent response of RNA synthesis in E. coli produced by a temperature shift-up. Biochem Biophys Res Commun. 1971 Oct 15;45(2):476–482. doi: 10.1016/0006-291x(71)90843-6. [DOI] [PubMed] [Google Scholar]
  20. Pratt D., Erdahl W. S. Genetic control of bacteriophage M13 DNA synthesis. J Mol Biol. 1968 Oct 14;37(1):181–200. doi: 10.1016/0022-2836(68)90082-x. [DOI] [PubMed] [Google Scholar]
  21. Pratt D., Tzagoloff H., Erdahl W. S. Conditional lethal mutants of the small filamentous coliphage M13. I. Isolation, complementation, cell killing, time of cistron action. Virology. 1966 Nov;30(3):397–410. doi: 10.1016/0042-6822(66)90118-8. [DOI] [PubMed] [Google Scholar]
  22. Primrose S. B., Brown L. R., Dowell C. E. Host cell participation in small virus replication. I. Replication of M-13 in a strain of Escherichia coli with a temperature-sensitive lesion in deoxyribonucleic acid synthesis. J Virol. 1968 Nov;2(11):1308–1314. doi: 10.1128/jvi.2.11.1308-1314.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ray D. S. Replication of bacteriophage M13. IV. Synthesis of M13-specific DNA in the presence of chloramphenicol. J Mol Biol. 1970 Oct 28;53(2):239–250. doi: 10.1016/0022-2836(70)90297-4. [DOI] [PubMed] [Google Scholar]
  24. SINSHEIMER R. L., STARMAN B., NAGLER C., GUTHRIE S. The process of infection with bacteriophage phi-XI74. I. Evidence for a "replicative form". J Mol Biol. 1962 Mar;4:142–160. doi: 10.1016/s0022-2836(62)80047-3. [DOI] [PubMed] [Google Scholar]
  25. Sokawa Y., Sokawa J., Kaziro Y. Function of the rel gene in Escherichia coli. Nat New Biol. 1971 Nov 3;234(44):7–10. doi: 10.1038/newbio234007a0. [DOI] [PubMed] [Google Scholar]
  26. Sugiura M., Okamoto T., Takanami M. Starting nucleotide sequences of RNA synthesized on the replicative form DNA of coliphage fd. J Mol Biol. 1969 Jul 28;43(2):299–315. doi: 10.1016/0022-2836(69)90269-1. [DOI] [PubMed] [Google Scholar]
  27. Tessman E. S. Mutants of bacteriophage S13 blocked in infectious DNA synthesis. J Mol Biol. 1966 May;17(1):218–236. doi: 10.1016/s0022-2836(66)80104-3. [DOI] [PubMed] [Google Scholar]
  28. Tosa T., Pizer L. I. Biochemical bases for the antimetabolite action of L-serine hydroxamate. J Bacteriol. 1971 Jun;106(3):972–982. doi: 10.1128/jb.106.3.972-982.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tosa T., Pizer L. I. Effect of serine hydroxamate on the growth of Escherichia coli. J Bacteriol. 1971 Jun;106(3):966–971. doi: 10.1128/jb.106.3.966-971.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Travers A. A., Kamen R. I., Schleif R. F. Factor necessary for ribosomal RNA synthesis. Nature. 1970 Nov 21;228(5273):748–751. doi: 10.1038/228748a0. [DOI] [PubMed] [Google Scholar]
  31. Tseng B. Y., Marvin D. A. Filamentous bacterial viruses. VI. Role of fd gene 2 in deoxyribonucleic acid replication. J Virol. 1972 Sep;10(3):384–391. doi: 10.1128/jvi.10.3.384-391.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES