Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Mar;113(3):1096–1103. doi: 10.1128/jb.113.3.1096-1103.1973

Isolation and Characterization of a Regulatory Mutant of an Aminoacyl-Transfer Ribonucleic Acid Synthetase in Escherichia coli K-12

S J Clarke a,1, B Low b, W Konigsberg c
PMCID: PMC251669  PMID: 4570769

Abstract

From Escherichia coli strain K28, which is temperature sensitive for growth because of a mutation in its seryl-transfer ribonucleic acid (tRNA) synthetase gene (serS), temperature-resistant mutants were selected which were found to have a fivefold higher level of seryl-tRNA synthetase than the parent strain. The “high-level” character was found to be genetically stable and is due to a mutation in a locus denoted serO. This locus was found to be very closely linked to serS on the genetic map, and the relative gene order was concluded to be serS-serO-serC. In a serO strain, the normal dependence of seryl-tRNA synthetase (SerRS) activity on changes of exogenous serine concentration was not observed. In a stable heterozygous merodiploid, the serO mutation is still expressed, i.e., it is cis dominant. These results strongly suggest that serO is an operator site involved in the control of the serS gene.

Full text

PDF
1096

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander R. R., Calvo J. M., Freundlich M. Mutants of Salmonella typhimurium with an altered leucyl-transfer ribonucleic acid synthetase. J Bacteriol. 1971 Apr;106(1):213–220. doi: 10.1128/jb.106.1.213-220.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Archibold E. R., Williams L. S. Regulation of synthesis of methionyl-, prolyl-, and threonyl-transfer ribonucleic acid synthetases of Escherichia coli. J Bacteriol. 1972 Mar;109(3):1020–1026. doi: 10.1128/jb.109.3.1020-1026.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clarke S. J., Low B., Konigsberg W. H. Close linkage of the genes serC (for phosphohydroxy pyruvate transaminase) and serS (for seryl-transfer ribonucleic acid synthetase) in Escherichia coli K-12. J Bacteriol. 1973 Mar;113(3):1091–1095. doi: 10.1128/jb.113.3.1091-1095.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. EIDLIC L., NEIDHARDT F. C. ROLE OF VALYL-SRNA SYNTHETASE IN ENZYME REPRESSION. Proc Natl Acad Sci U S A. 1965 Mar;53:539–543. doi: 10.1073/pnas.53.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ehresmann B., Karst F., Weil J. H. Regulation of the biosynthesis of valyl-tRNA synthetase in yeast. Biochim Biophys Acta. 1971 Dec 16;254(2):226–236. doi: 10.1016/0005-2787(71)90831-8. [DOI] [PubMed] [Google Scholar]
  6. Folk W. R., Berg P. Duplication of the structural gene for glycyl-transfer RNA synthetase in Escherichia coli. J Mol Biol. 1971 Jun 14;58(2):595–610. doi: 10.1016/0022-2836(71)90374-3. [DOI] [PubMed] [Google Scholar]
  7. Fraenkel D. G., Banerjee S. A mutation increasing the amount of a constitutive enzyme in Escherichia coli, glucose 6-phosphate dehydrogenase. J Mol Biol. 1971 Feb 28;56(1):183–194. doi: 10.1016/0022-2836(71)90093-3. [DOI] [PubMed] [Google Scholar]
  8. Freundlich M. Valyl-Transfer RNA: Role in Repression of the Isoleucine-Valine Enzymes in Escherichia coli. Science. 1967 Aug 18;157(3790):823–825. doi: 10.1126/science.157.3790.823-a. [DOI] [PubMed] [Google Scholar]
  9. Lengyel P., Söll D. Mechanism of protein biosynthesis. Bacteriol Rev. 1969 Jun;33(2):264–301. doi: 10.1128/br.33.2.264-301.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Low K. B. Escherichia coli K-12 F-prime factors, old and new. Bacteriol Rev. 1972 Dec;36(4):587–607. doi: 10.1128/br.36.4.587-607.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McGinnis E., Williams L. S. Regulation of synthesis of the aminoacyl-transfer ribonucleic acid synthetases for the branched-chain amino acids of Escherichia coli. J Bacteriol. 1971 Oct;108(1):254–262. doi: 10.1128/jb.108.1.254-262.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McGinnis E., Williams L. S. Role of histidine transfer ribonucleic acid in regulation of synthesis of histidyl-transfer ribonucleic acid synthetase of Salmonella typhimurium. J Bacteriol. 1972 Feb;109(2):505–511. doi: 10.1128/jb.109.2.505-511.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Müller-Hill B., Crapo L., Gilbert W. Mutants that make more lac repressor. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1259–1264. doi: 10.1073/pnas.59.4.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Neidhardt F. C. Roles of amino acid activating enzymes in cellular physiology. Bacteriol Rev. 1966 Dec;30(4):701–719. doi: 10.1128/br.30.4.701-719.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schlesinger S., Nester E. W. Mutants of Escherichia coli with an altered tyrosyl-transfer ribonucleic acid synthetase. J Bacteriol. 1969 Oct;100(1):167–175. doi: 10.1128/jb.100.1.167-175.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Taylor A. L. Current linkage map of Escherichia coli. Bacteriol Rev. 1970 Jun;34(2):155–175. doi: 10.1128/br.34.2.155-175.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tosa T., Pizer L. I. Biochemical bases for the antimetabolite action of L-serine hydroxamate. J Bacteriol. 1971 Jun;106(3):972–982. doi: 10.1128/jb.106.3.972-982.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Williams L. S., Neidhardt F. C. Synthesis and inactivation of aminoacyl-transfer RNA synthetases during growth of Escherichia coli. J Mol Biol. 1969 Aug 14;43(3):529–550. doi: 10.1016/0022-2836(69)90357-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES