Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1979 Aug;31:41–43. doi: 10.1289/ehp.793141

Mechanisms of nondisjunction induction in drosophila oocytes.

B Leigh
PMCID: PMC1637654  PMID: 499127

Abstract

Quantitative and qualitative studies on the induction of no-disjunction and related phenomena can be carried out using the germ cells of Drosophila. X-Irradiation breaks chromosomes and cold-shock disrupts spindles, these two treatments producing different spectra of nondisjunction in oocytes.

Full text

PDF
41

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyd J. B., Golino M. D., Nguyen T. D., Green M. M. Isolation and characterization of X-linked mutants of Drosophila melanogaster which are sensitive to mutagens. Genetics. 1976 Nov;84(3):485–506. doi: 10.1093/genetics/84.3.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clark A. M., Sobels F. H. Studies on non-disjunction of the major autosomes in Drosophila melanogaster. I. Methodology and rate of induction by x-rays for the compound second chromosome. Mutat Res. 1973 Apr;18(1):47–61. doi: 10.1016/0027-5107(73)90020-1. [DOI] [PubMed] [Google Scholar]
  3. GRELL R. F. A new hypothesis on the nature and sequence of meiotic events in the female of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1962 Feb;48:165–172. doi: 10.1073/pnas.48.2.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Grell E. H. Distributive pairing: mechanism for segregation of compound autosomal chromosomes in oocytes of Drosophila melanogaster. Genetics. 1970 May;65(1):65–74. doi: 10.1093/genetics/65.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hildreth P. E., Ulrichs P. C. A temperature effect on nondisjunction of the X chromosomes among eggs from aged Drosophila females. Genetica. 1969;40(2):191–197. doi: 10.1007/BF01787349. [DOI] [PubMed] [Google Scholar]
  6. Inoué S., Borisy G. G., Kiehart D. P. Growth and lability of Chaetopterus oocyte mitotic spindles isolated in the presence of porcine brain tubulin. J Cell Biol. 1974 Jul;62(1):175–184. doi: 10.1083/jcb.62.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Parker D. R. Radiation-induced nondisjunction and Robertsonian translocation in Drosophila. Mutat Res. 1974 Aug;24(2):149–162. doi: 10.1016/0027-5107(74)90128-6. [DOI] [PubMed] [Google Scholar]
  8. Parker D. R., Williamson J. H., Gavin J. The nature and time of occurrence of radiation-induced nondisjunction of the acrocentric X and fourth chromosomes in Drosophila melanogaster females. Mutat Res. 1974 Aug;24(2):135–148. [PubMed] [Google Scholar]
  9. Sobels F. H., Vogel E. The capacity of Drosophila for detecting relevant genetic damage. Mutat Res. 1976 Nov 1;41(1 SPEL):95–106. doi: 10.1016/0027-5107(76)90079-8. [DOI] [PubMed] [Google Scholar]
  10. Tokunaga C. Aspects of low-temperature-induced meiotic nondisjunction in Drosophila females. Genetics. 1970 Dec;66(4):653–661. doi: 10.1093/genetics/66.4.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Traut H. Nondisjunction induced by x-rays in oocytes of Drosophila melanogaster. Mutat Res. 1970 Aug;10(2):125–132. doi: 10.1016/0027-5107(70)90157-0. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES