Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1970 Nov;210(4):999–1020. doi: 10.1113/jphysiol.1970.sp009254

The kinetics of influx of calcium and strontium into rat intestine in vitro

D G Papworth, G Patrick
PMCID: PMC1395636  PMID: 5501493

Abstract

1. The role of uptake across the brush border in the intestinal absorption of calcium has been studied by examining the kinetics of influx into slices of rat intestine in vitro. Both mucosal and serosal surfaces were exposed to the medium.

2. The rate of influx was accurately defined by a two-component expression comprising a saturable (Michaelis—Menten) term and a second term linear with concentration. Influx across the mucosal surface of closed sacs was similar, and the saturable component for slice influx could be ascribed mainly to transport across the mucosal surface. The half-saturation constant for Ca was near 1 mM. This component was predominant at normal luminal concentrations of free Ca in the duodenum of young rats, but less so in jejunum and ileum and in older rats.

3. The same kinetic expression applied to Sr influx, with a half-saturation constant of 2-3 mM, and possibly also to Ba with an even higher value.

4. The saturable component of Ca influx was greatly reduced by 2,4: dinitrophenol (DNP); influx was also inhibited by iodoacetate, cyanide and at 0° C. Inhibition commenced soon after exposure of the slices. A high concentration of DNP also caused an increase in the linear component of Ca influx.

5. The kinetics of Ca influx across the mucosal surface agreed closely with the kinetics of steady-state absorption of Ca either across the whole mucosal epithelium in vivo or across the entire intestinal wall in vitro. This agreement supports the hypothesis that Ca entry across the brush border is the rate-limiting step in absorption; such a hypothesis would allow net Ca translocation while preserving a low intracellular concentration of ionic Ca in the mucosal epithelial cells.

Full text

PDF
999

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIHLER I., CRANE R. K. Studies on the mechanism of intestinal absorption of sugars. V. The influence of several cations and anions on the active transport of sugars, in vitro, by various preparations of hamster small intestine. Biochim Biophys Acta. 1962 May 7;59:78–93. doi: 10.1016/0006-3002(62)90699-6. [DOI] [PubMed] [Google Scholar]
  2. Bar A., Hurwitz S. The accumulation of calcium in laying fowl intestine in vitro. Biochim Biophys Acta. 1969;183(3):591–600. doi: 10.1016/0005-2736(69)90172-2. [DOI] [PubMed] [Google Scholar]
  3. Borle A. B. Membrane transfer of calcium. Clin Orthop Relat Res. 1967 May-Jun;52:267–291. doi: 10.1097/00003086-196700520-00022. [DOI] [PubMed] [Google Scholar]
  4. COMAR C. L., NOLD M. M., WASSERMAN R. H. Strontium-calcium discrimination factors in the rat. Proc Soc Exp Biol Med. 1956 Aug-Sep;92(4):859–863. doi: 10.3181/00379727-92-22636. [DOI] [PubMed] [Google Scholar]
  5. CRAMER C. F., COPP D. H. Progress and rate of absorption of radiostrontium through intestinal tracts of rats. Proc Soc Exp Biol Med. 1959 Nov;102:514–517. doi: 10.3181/00379727-102-25301. [DOI] [PubMed] [Google Scholar]
  6. CRAMER C. F. SITES OF CALCIUM ABSORPTION AND THE CALCIUM CONCENTRATION OF GUT CONTENTS IN THE DOG. Can J Physiol Pharmacol. 1965 Jan;43:75–78. doi: 10.1139/y65-009. [DOI] [PubMed] [Google Scholar]
  7. DOWDLE E. B., SCHACHTER D., SCHENKER H. Requirement for vitamin D for the active transport of calcium by the intestine. Am J Physiol. 1960 Feb;198:269–274. doi: 10.1152/ajplegacy.1960.198.2.269. [DOI] [PubMed] [Google Scholar]
  8. DUMONT P. A., CURRAN P. F., SOLOMON A. K. Calcium and strontium in rat small intestine. Their fluxes and their effect on Na flux. J Gen Physiol. 1960 Jul;43:1119–1136. doi: 10.1085/jgp.43.6.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gilles-Baillien M., Schoffeniels E. Bioelectric potentials in the intestinal epithelium of the Greek tortoise. Comp Biochem Physiol. 1967 Oct;23(1):95–104. doi: 10.1016/0010-406x(67)90476-8. [DOI] [PubMed] [Google Scholar]
  10. Gilles-Baillien M., Schoffeniels E. Site of action of L-alanine and D-glucose on the potential difference across the intestine. Arch Int Physiol Biochim. 1965 Mar;73(2):355–357. doi: 10.3109/13813456509084257. [DOI] [PubMed] [Google Scholar]
  11. HODGKIN A. L., KEYNES R. D. Movements of labelled calcium in squid giant axons. J Physiol. 1957 Sep 30;138(2):253–281. doi: 10.1113/jphysiol.1957.sp005850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Helbock H. J., Forte J. G., Saltman P. The mechanism of calcium transport by rat intestine. Biochim Biophys Acta. 1966 Sep 5;126(1):81–93. doi: 10.1016/0926-6585(66)90039-2. [DOI] [PubMed] [Google Scholar]
  13. Holdsworth E. S. Vitamin D3 and calcium absorption in the chick. Biochem J. 1965 Aug;96(2):475–483. doi: 10.1042/bj0960475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. KIMBERG D. V., SCHACHTER D., SCHENKER H. Active transport of calcium by intestine: effects of dietary calcium. Am J Physiol. 1961 Jun;200:1256–1262. doi: 10.1152/ajplegacy.1961.200.6.1256. [DOI] [PubMed] [Google Scholar]
  15. Krawitt E. L., Schedl H. P. In vivo calcium transport by rat small intestine. Am J Physiol. 1968 Feb;214(2):232–236. doi: 10.1152/ajplegacy.1968.214.2.232. [DOI] [PubMed] [Google Scholar]
  16. MARCUS C. S., LENGEMANN F. W. Absorption of Ca45 and Sr85 from solid and liquid food at various levels of the alimentary tract of the rat. J Nutr. 1962 Jun;77:155–160. doi: 10.1093/jn/77.2.155. [DOI] [PubMed] [Google Scholar]
  17. Martin D. L., Deluca H. F. Calcium transport and the role of vitamin D. Arch Biochem Biophys. 1969 Oct;134(1):139–148. doi: 10.1016/0003-9861(69)90260-4. [DOI] [PubMed] [Google Scholar]
  18. Patrick G. Localization of the rate-limiting step in calcium absorption by rat intestine. J Physiol. 1970 Mar;207(1):38P–39P. [PubMed] [Google Scholar]
  19. SCHACHTER D., DOWDLE E. B., SCHENKER H. Accumulation of Ca45 by slices of the small intestine. Am J Physiol. 1960 Feb;198:275–279. doi: 10.1152/ajplegacy.1960.198.2.275. [DOI] [PubMed] [Google Scholar]
  20. SCHACHTER D., DOWDLE E. B., SCHENKER H. Active transport of calcium by the small intestine of the rat. Am J Physiol. 1960 Feb;198:263–268. doi: 10.1152/ajplegacy.1960.198.2.263. [DOI] [PubMed] [Google Scholar]
  21. SCHACHTER D., KIMBERG D. V., SCHENKER H. Active transport of calcium by intestine: action and bio-assay of vitamin D. Am J Physiol. 1961 Jun;200:1263–1271. doi: 10.1152/ajplegacy.1961.200.6.1263. [DOI] [PubMed] [Google Scholar]
  22. SCHACHTER D., ROSEN S. M. Active transport of Ca45 by the small intestine and its dependence on vitamin D. Am J Physiol. 1959 Feb;196(2):357–362. doi: 10.1152/ajplegacy.1959.196.2.357. [DOI] [PubMed] [Google Scholar]
  23. Schachter D., Kowarski S., Finkelstein J. D., Ma R. I. Tissue concentration differences during active transport of calcium by intestine. Am J Physiol. 1966 Nov;211(5):1131–1136. doi: 10.1152/ajplegacy.1966.211.5.1131. [DOI] [PubMed] [Google Scholar]
  24. Schatzmann H. J. ATP-dependent Ca++-extrusion from human red cells. Experientia. 1966 Jun 15;22(6):364–365. doi: 10.1007/BF01901136. [DOI] [PubMed] [Google Scholar]
  25. Sernka T. J., Borle A. B. Calcium in the intestinal contents of rats on different calcium diets. Proc Soc Exp Biol Med. 1969 Sep;131(4):1420–1423. doi: 10.3181/00379727-131-34121. [DOI] [PubMed] [Google Scholar]
  26. TAYLOR D. M., BLIGH P. H., DUGGAN M. H. The absorption of calcium, strontium, barium and radium from the gastrointestinal tract of the rat. Biochem J. 1962 Apr;83:25–29. doi: 10.1042/bj0830025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. WASSERMAN R. H., KALLFELZ F. A., COMAR C. L. Active transport of calcium by rat duodenum in vivo. Science. 1961 Mar 24;133(3456):883–884. doi: 10.1126/science.133.3456.883. [DOI] [PubMed] [Google Scholar]
  28. WILSON T. H., WISEMAN G. The use of sacs of everted small intestine for the study of the transference of substances from the mucosal to the serosal surface. J Physiol. 1954 Jan;123(1):116–125. doi: 10.1113/jphysiol.1954.sp005036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Walling M. W., Rothman S. S. Phosphate-independent, carrier-mediated active transport of calcium by rat intestine. Am J Physiol. 1969 Oct;217(4):1144–1148. doi: 10.1152/ajplegacy.1969.217.4.1144. [DOI] [PubMed] [Google Scholar]
  30. Wright E. M. The origin of the glucose dependent increase in the potential difference across the tortoise small intestine. J Physiol. 1966 Jul;185(2):486–500. doi: 10.1113/jphysiol.1966.sp007998. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES