Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1976 Jul;259(2):473–490. doi: 10.1113/jphysiol.1976.sp011477

Alterations in amounts and rates of serotonin transported in an axon of the giant cerebral neurone of Aplysia californica.

D J Goldberg, J E Goldman, J H Schwartz
PMCID: PMC1309040  PMID: 60486

Abstract

1. The giant cerebral neurone of the sea hare, Aplysia californica, is a unipolar serotonergic cell. Its axon bifurcates, one branch travelling in the cerebrobuccal connective, the other in the posterior lip nerve. 2. I13H]serotonin was injected under pressure into the cell body of the giant cerebral neurone. We studied fast axonal transport of the radioactive transmitter substance along the lip nerve when the cerebrobuccal connective was cut close to the bifurcation. 3. When the connective was cut, more than twice as much [3H]serotonin was transported along the lip nerve compared to uncut control nervous systems. 4. The increased [3H]serotonin appearing in the nerve probably was originally destined to enter the connective, but was diverted from the cut stump which was occluded with backed-up material. 5. The incremental [3H]serotonin in the lip nerve was not the result of increased export from the soma in response to injury. 6. Not only was more [3H]serotonin transported along the lip nerve, but also a far greater fraction of the transmitter moved at very fast transport rates, approaching 120 mm/day. In uncut control nerves only a small fraction of total [3H]serotin moved faster than 70 mm/day. 7. These results are interpreted with a model for fast axonal transport. We suggest that serotonergic vesicles move at a fixed, maximal speed when attached to essentially immobile tracks, but that the vesicles are only intermittently associated with the tracks. We presume that the rate-limiting step in movement of vesicles is the concentration-dependent and reversible binding to the tracks. Transport along axons may be considered analogous to those enzymatic reactions in which formation of the enzyme-substrate complex limits the appearance of product. Translocation is here analogous to formation of product. The process may therefore be approached theoretically by modification of the Michaelis-Menten formulation.

Full text

PDF
473

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambron R. T., Goldman J. E., Schwartz J. H. Axonal transport of newly synthesized glycoproteins in a single identified neuron of Aplysia californica. J Cell Biol. 1974 Jun;61(3):665–675. doi: 10.1083/jcb.61.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berlinrood M., McGee-Russell S. M., Allen R. D. Patterns of particle movement in nerve fibres in vitro. An analysis by photokymography and microscopy. J Cell Sci. 1972 Nov;11(3):875–886. doi: 10.1242/jcs.11.3.875. [DOI] [PubMed] [Google Scholar]
  3. Boegman R. J., Wood P. L., Pinaud L. Increased axoplasmic flow associated with pargyline under conditions which induce a myopathy. Nature. 1975 Jan 3;253(5486):51–52. doi: 10.1038/253051a0. [DOI] [PubMed] [Google Scholar]
  4. Brimijoin S. Stop-flow: a new technique for measuring axonal transport, and its application to the transport of dopamine-beta-hydroxylase. J Neurobiol. 1975 Jul;6(4):379–394. doi: 10.1002/neu.480060404. [DOI] [PubMed] [Google Scholar]
  5. Byers M. R. Structural correlates of rapid axonal transport: evidence that microtubules may not be directly involved. Brain Res. 1974 Jul 19;75(1):97–113. doi: 10.1016/0006-8993(74)90773-2. [DOI] [PubMed] [Google Scholar]
  6. Cooper P. D., Smith R. S. The movement of optically detectable organelles in myelinated axons of Xenopus laevis. J Physiol. 1974 Oct;242(1):77–97. doi: 10.1113/jphysiol.1974.sp010695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dahlström A. Axoplasmic transport (with particular respect to adrenergic neurons). Philos Trans R Soc Lond B Biol Sci. 1971 Jun 17;261(839):325–358. doi: 10.1098/rstb.1971.0064. [DOI] [PubMed] [Google Scholar]
  8. Droz B., Rambourg A., Koenig H. L. The smooth endoplasmic reticulum: structure and role in the renewal of axonal membrane and synaptic vesicles by fast axonal transport. Brain Res. 1975 Jul 25;93(1):1–13. doi: 10.1016/0006-8993(75)90282-6. [DOI] [PubMed] [Google Scholar]
  9. Eisenstadt M., Goldman J. E., Kandel E. R., Koike H., Koester J., Schwartz J. H. Intrasomatic injection of radioactive precursors for studying transmitter synthesis in identified neurons of Aplysia californica. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3371–3375. doi: 10.1073/pnas.70.12.3371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Geffen L. B., Livett B. G. Synaptic vesicles in sympathetic neurons. Physiol Rev. 1971 Jan;51(1):98–157. doi: 10.1152/physrev.1971.51.1.98. [DOI] [PubMed] [Google Scholar]
  11. Geffen L. B., Rush R. A. Transport of noradrenaline in sympathetic nerves and the effect of nerve impulses on its contribution to transmitter stores. J Neurochem. 1968 Sep;15(9):925–930. doi: 10.1111/j.1471-4159.1968.tb11634.x. [DOI] [PubMed] [Google Scholar]
  12. Goldman J. E., Schwartz J. H. Cellular specificity of serotonin storage and axonal transport in identified neurones of Aplysia californica. J Physiol. 1974 Oct;242(1):61–76. doi: 10.1113/jphysiol.1974.sp010694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grafstein B., Murray M. Transport of protein in goldfish optic nerve during regeneration. Exp Neurol. 1969 Dec;25(4):494–508. doi: 10.1016/0014-4886(69)90093-4. [DOI] [PubMed] [Google Scholar]
  14. Hammerschlag R., Dravid A. R., Chiu A. Y. Mechanism of axonal transport: a proposed role for calcium ions. Science. 1975 Apr 18;188(4185):273–275. doi: 10.1126/science.47182. [DOI] [PubMed] [Google Scholar]
  15. Hendrickson A. E., Cowan W. M. Changes in the rate of axoplasmic transport during postnatal development of the rabbit's optic nerve and tract. Exp Neurol. 1971 Mar;30(3):403–422. doi: 10.1016/0014-4886(71)90142-7. [DOI] [PubMed] [Google Scholar]
  16. Johnson G., Smith R. S., Lock G. S. Accumulation of material at severed ends of myelinated nerve fibers. Am J Physiol. 1969 Jul;217(1):188–191. doi: 10.1152/ajplegacy.1969.217.1.188. [DOI] [PubMed] [Google Scholar]
  17. Kandel E. R., Tauc L. Anomalous rectification in the metacerebral giant cells and its consequences for synaptic transmission. J Physiol. 1966 Mar;183(2):287–304. doi: 10.1113/jphysiol.1966.sp007867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kandel E. R., Tauc L. Input organization of two symmetrical giant cells in the snail brain. J Physiol. 1966 Mar;183(2):269–286. doi: 10.1113/jphysiol.1966.sp007866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. LUBINSKA L. Outflow from cut ends of nerve fibres. Exp Cell Res. 1956 Feb;10(1):40–47. doi: 10.1016/0014-4827(56)90068-4. [DOI] [PubMed] [Google Scholar]
  20. Lux H. D., Schubert P., Kreutzberg G. W., Globus A. Excitation and axonal flow: autoradiographic study on motoneurons intracellularly injected with a 3H-amino acid. Exp Brain Res. 1970;10(2):197–204. doi: 10.1007/BF00234732. [DOI] [PubMed] [Google Scholar]
  21. McCaman M. W., McCaman R. E., Lees G. J. Liquid cation exchange--a basis for sensitive radiometric assays for aromatic amino acid decarboxylases. Anal Biochem. 1972 Jan;45(1):242–252. doi: 10.1016/0003-2697(72)90024-3. [DOI] [PubMed] [Google Scholar]
  22. NATHANS D., NOTANI G., SCHWARTZ J. H., ZINDER N. D. Biosynthesis of the coat protein of coliphage f2 by E. coli extracts. Proc Natl Acad Sci U S A. 1962 Aug;48:1424–1431. doi: 10.1073/pnas.48.8.1424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ochs S. Fast transport of materials in mammalian nerve fibers. Science. 1972 Apr 21;176(4032):252–260. doi: 10.1126/science.176.4032.252. [DOI] [PubMed] [Google Scholar]
  24. Olson L., Fuxe K. On the projections from the locus coeruleus noradrealine neurons: the cerebellar innervation. Brain Res. 1971 Apr 16;28(1):165–171. doi: 10.1016/0006-8993(71)90533-6. [DOI] [PubMed] [Google Scholar]
  25. Palay S. L., Chan-Palay V. A guide to the synaptic analysis of the neuropil. Cold Spring Harb Symp Quant Biol. 1976;40:1–16. doi: 10.1101/sqb.1976.040.01.003. [DOI] [PubMed] [Google Scholar]
  26. Pollard T. D., Weihing R. R. Actin and myosin and cell movement. CRC Crit Rev Biochem. 1974 Jan;2(1):1–65. doi: 10.3109/10409237409105443. [DOI] [PubMed] [Google Scholar]
  27. Weinreich D., McCaman M. W., McCaman R. E., Vaughn J. E. Chemical, enzymatic and ultrastructural characterization of 5-hydroxytryptamine-containing neurons from the ganglia of Aplysia californica and Tritionia diomedia. J Neurochem. 1973 Apr;20(4):969–976. doi: 10.1111/j.1471-4159.1973.tb00067.x. [DOI] [PubMed] [Google Scholar]
  28. Weiss K. R., Cohen J., Kupfermann I. Potentiation of muscle contraction: a possible modulatory function of an identified serotonergic cell in Aplysia. Brain Res. 1975 Dec 5;99(2):381–386. doi: 10.1016/0006-8993(75)90041-4. [DOI] [PubMed] [Google Scholar]
  29. Willard M., Cowan W. M., Vagelos P. R. The polypeptide composition of intra-axonally transported proteins: evidence for four transport velocities. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2183–2187. doi: 10.1073/pnas.71.6.2183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wood P. L., Boegman R. J. Increased rate of rapid axonal transport in vitamin E deficient rats. Brain Res. 1975 Feb 7;84(2):325–328. doi: 10.1016/0006-8993(75)90988-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES