Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Jul 15;221(2):351–359. doi: 10.1042/bj2210351

Endogenous cyclic AMP-stimulated phosphorylation of a Wolfgram protein component in rabbit central-nervous-system myelin.

J M Bradbury, R S Campbell, R J Thompson
PMCID: PMC1144046  PMID: 6089736

Abstract

Cyclic AMP-stimulated phosphorylation of membrane proteins in central-nervous-system myelin was investigated, with rabbit brain myelin. Subfractionation of a myelin membrane preparation by sucrose-density-gradient centrifugation produced a rapidly sedimenting population of membrane vesicles containing 5'-nucleotidase and acetylcholinesterase, a light membrane fraction containing myelin basic protein and 2',3'-cyclic nucleotide 3'-phosphodiesterase, and an intermediate membrane fraction containing the highest specific activity of 2',3'-cyclic nucleotide 3'-phosphodiesterase and a small proportion of myelin basic protein. Cyclic AMP stimulation of protein phosphorylation was confined to a protein of Mr 49 700, which co-electrophoresed with the upper component of the Wolfgram protein doublet. Cyclic AMP did not affect the phosphorylation of myelin basic protein. Cyclic AMP-stimulated phosphorylation of this protein followed 2',3'-cyclic nucleotide 3'-phosphodiesterase activity on subcellular fractionation and was correspondingly high in the intermediate or 'myelin-like' fraction on sucrose-density-gradient centrifugation.

Full text

PDF
351

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal H. C., O'Connell K., Randle C. L., Agrawal D. Phosphorylation in vivo of four basic proteins of rat brain myelin. Biochem J. 1982 Jan 1;201(1):39–47. doi: 10.1042/bj2010039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banik N. L., Davison A. N. Enzyme activity and composition of myelin and subcellular fractions in the developing rat brain. Biochem J. 1969 Dec;115(5):1051–1062. doi: 10.1042/bj1151051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cammer W., Sirota S. R., Zimmerman T. R., Jr, Norton W. T. 5'-nucleotidase in rat brain myelin. J Neurochem. 1980 Aug;35(2):367–373. doi: 10.1111/j.1471-4159.1980.tb06273.x. [DOI] [PubMed] [Google Scholar]
  4. Carnegie P. R. Amino acid sequence of the encephalitogenic basic protein from human myelin. Biochem J. 1971 Jun;123(1):57–67. doi: 10.1042/bj1230057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carnegie P. R., Kemp B. E., Dunkley P. R., Murray A. W. Phosphorylation of myelin basic protein by an adenosine 3':5'-cyclic monophosphate-dependent protein kinase. Biochem J. 1973 Nov;135(3):569–572. doi: 10.1042/bj1350569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Drummond R. J., Dean G. Comparison of 2',3'-cyclic nucleotide 3'-phosphodiesterase and the major component of Wolfgram protein W1. J Neurochem. 1980 Nov;35(5):1155–1165. doi: 10.1111/j.1471-4159.1980.tb07871.x. [DOI] [PubMed] [Google Scholar]
  7. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  8. Endo T., Hidaka H. Ca2+-calmodulin dependent phosphorylation of myelin isolated from rabbit brain. Biochem Biophys Res Commun. 1980 Nov 28;97(2):553–558. doi: 10.1016/0006-291x(80)90299-5. [DOI] [PubMed] [Google Scholar]
  9. Eylar E. H. Amino acid sequence of the basic protein of the myelin membrane. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1425–1431. doi: 10.1073/pnas.67.3.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FOLCH J., LEES M. Proteolipides, a new type of tissue lipoproteins; their isolation from brain. J Biol Chem. 1951 Aug;191(2):807–817. [PubMed] [Google Scholar]
  11. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  12. Hutton J. C., Penn E. J., Jackson P., Hales C. N. Isolation and characterization of calmodulin from an insulin-secreting tumour. Biochem J. 1981 Mar 1;193(3):875–885. doi: 10.1042/bj1930875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. JOHNSON M. K. The intracellular distribution of glycolytic and other enzymes in rat-brain homogenates and mitochondrial preparations. Biochem J. 1960 Dec;77:610–618. doi: 10.1042/bj0770610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johnson E. M., Maeno H., Greengard P. Phosphorylation of endogenous protein of rat brain by cyclic adenosine 3',5'-monophosphate-dependent protein kinase. J Biol Chem. 1971 Dec 25;246(24):7731–7739. [PubMed] [Google Scholar]
  15. Kurihara T., Tsukada Y. The regional and subcellular distribution of 2',3'-cyclic nucleotide 3'-phosphohydrolase in the central nervous system. J Neurochem. 1967 Dec;14(12):1167–1174. doi: 10.1111/j.1471-4159.1967.tb06164.x. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Miyamoto E., Kakiuchi S. In vitro and in vivo phosphorylation of myelin basic protein by exogenous and endogenous adenosine 3':5'-monophosphate-dependent protein kinases in brain. J Biol Chem. 1974 May 10;249(9):2769–2777. [PubMed] [Google Scholar]
  19. Miyamoto E., Kakiuchi S., Kakimoto Y. In vitro and in vivo phosphorylation of myelin basic protein by cerebral protein kinase. Nature. 1974 May 10;249(453):150–151. doi: 10.1038/249150a0. [DOI] [PubMed] [Google Scholar]
  20. Miyamoto E. Protein kinases in myelin of rat brain: solubilization and characterization. J Neurochem. 1975 Mar;24(3):503–512. doi: 10.1111/j.1471-4159.1975.tb07668.x. [DOI] [PubMed] [Google Scholar]
  21. Sogin D. C. 2',3'-Cyclic NADP as a substrate for 2',3'-cyclic nucleotide 3'-phosphohydrolase. J Neurochem. 1976 Dec;27(6):1333–1337. doi: 10.1111/j.1471-4159.1976.tb02612.x. [DOI] [PubMed] [Google Scholar]
  22. Sprinkle T. J., Wells M. R., Garver F. A., Smith D. B. Studies on the Wolfgram high molecular weight CNS myelin proteins: relationship to 2',3'-cyclic nucleotide 3'-phosphodiesterase. J Neurochem. 1980 Nov;35(5):1200–1208. doi: 10.1111/j.1471-4159.1980.tb07876.x. [DOI] [PubMed] [Google Scholar]
  23. Stanley K. K., Edwards M. R., Luzio J. P. Subcellular distribution and movement of 5'-nucleotidase in rat cells. Biochem J. 1980 Jan 15;186(1):59–69. doi: 10.1042/bj1860059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Steck A. J., Appel S. H. Phosphorylation of myelin basic protein. J Biol Chem. 1974 Sep 10;249(17):5416–5420. [PubMed] [Google Scholar]
  25. Studier F. W. Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol. 1973 Sep 15;79(2):237–248. doi: 10.1016/0022-2836(73)90003-x. [DOI] [PubMed] [Google Scholar]
  26. Sulakhe P. V., Petrali E. H., Davis E. R., Thiessen B. J. Calcium ion stimulated endogenous protein kinase catalyzed phosphorylation of basic proteins in myelin subfractions and myelin-like membrane fraction from rat brain. Biochemistry. 1980 Nov 11;19(23):5363–5371. doi: 10.1021/bi00564a034. [DOI] [PubMed] [Google Scholar]
  27. Sulakhe P. V., Petrali E. H., Thiessen B. J., Davis E. R. Calcium ion-stimulated phosphorylation of myelin proteins. Biochem J. 1980 Feb 15;186(2):469–473. doi: 10.1042/bj1860469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Turner R. S., Chou C. H., Kibler R. F., Kuo J. F. Basic protein in brain myelin is phosphorylated by endogenous phospholipid-sensitive Ca2+-dependent protein kinase. J Neurochem. 1982 Nov;39(5):1397–1404. doi: 10.1111/j.1471-4159.1982.tb12583.x. [DOI] [PubMed] [Google Scholar]
  29. Waehneldt T. V., Matthieu J. M., Neuhoff V. Characterization of a myelin-related fraction (SN 4) isolated from rat forebrain at two developmental stages. Brain Res. 1977 Dec 9;138(1):29–43. doi: 10.1016/0006-8993(77)90782-x. [DOI] [PubMed] [Google Scholar]
  30. Walsh D. A., Perkins J. P., Brosom C. O., Ho E. S., Kreb E. G. Catlysis of the phosphrylaseinase actition reaction. J Biol Chem. 1971 Apr 10;246(7):1968–1976. [PubMed] [Google Scholar]
  31. Whittaker V. P. The application of subcellular fractionation techniques to the study of brain function. Prog Biophys Mol Biol. 1965;15:39–96. doi: 10.1016/0079-6107(65)90004-0. [DOI] [PubMed] [Google Scholar]
  32. Wolfgram F., Kotorii K. The composition of the myelin proteins of the central nervous system. J Neurochem. 1968 Nov;15(11):1281–1290. doi: 10.1111/j.1471-4159.1968.tb05905.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES