Abstract
1 The ability of glutamate, aspartate and related neuroexcitants to produce large calcium-dependent increases in the levels of guanosine 3',5'-cyclic monophosphate (cyclic GMP) in immature rat cerebellar slices has been demonstrated. 2 These effects were inhibited by selective antagonist compounds, indicating the presence of at least two types of excitatory amino acid receptor mediating the cyclic GMP response. 3 Protoveratrine also produced large increases in cyclic GMP, and this action was antagonized by L-glutamate diethylester suggesting that released endogenous glutamate, subsequently interacting with its postsynaptic receptors, is the predominant mechanism. 4 The kinetic characteristics of several of the inhibitor compounds were investigated.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Biggio G., Guidotti A. Climbing fiver activation and 3', 5'-cyclic guanosine monophosphate (cGMP) content in cortex and deep nuclei of cerebellum. Brain Res. 1976 May 7;107(2):365–373. doi: 10.1016/0006-8993(76)90233-x. [DOI] [PubMed] [Google Scholar]
- Biscoe T. J., Davies J., Dray A., Evans R. H., Martin M. R., Watkins J. C. D-alpha-aminoadipate, alpha, epsilon-diominopimelic acid and HA-966 as antagonists of amino acid-induced and synpatic excitation of mammalian spinal neurones in vivo. Brain Res. 1978 Jun 16;148(2):543–548. doi: 10.1016/0006-8993(78)90745-x. [DOI] [PubMed] [Google Scholar]
- Blaustein M. P. Effects of potassium, veratridine, and scorpion venom on calcium accumulation and transmitter release by nerve terminals in vitro. J Physiol. 1975 Jun;247(3):617–655. doi: 10.1113/jphysiol.1975.sp010950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Briley P. A., Kouyoumdjian J. C., Haidamous M., Gonnard P. Effect of L-glutamate and kainate on rat cerebellar cGMP levels in vivo. Eur J Pharmacol. 1979 Feb 15;54(1-2):181–184. doi: 10.1016/0014-2999(79)90422-9. [DOI] [PubMed] [Google Scholar]
- Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
- Evans R. H., Francis A. A., Watkins J. C. Mg2+-like selective antagonism of excitatory amino acid-induced responses by alpha, epsilon-diaminopimelic acid, D-alpha-aminoadipate and HA-966 in isolated spinal cord of frog and immature rat. Brain Res. 1978 Jun 16;148(2):536–542. doi: 10.1016/0006-8993(78)90744-8. [DOI] [PubMed] [Google Scholar]
- Foster A. C., Roberts P. J. Endogenous amino acid release from rat cerebellum in vitro. J Neurochem. 1980 Aug;35(2):517–519. doi: 10.1111/j.1471-4159.1980.tb06299.x. [DOI] [PubMed] [Google Scholar]
- Foster A. C., Roberts P. J. High affinity l-[3h]glutamate binding to postsynaptic receptor sites on rat cerebellar membranes. J Neurochem. 1978 Dec;31(6):1467–1477. doi: 10.1111/j.1471-4159.1978.tb06574.x. [DOI] [PubMed] [Google Scholar]
- Foster G. A., Roberts P. J. Pharmacology of excitatory amino acid receptors mediating the stimulation of rat cerebellar cyclic GMP levels in vitro. Life Sci. 1980 Jul 21;27(3):215–221. doi: 10.1016/0024-3205(80)90140-x. [DOI] [PubMed] [Google Scholar]
- Garthwaite J., Balazs R. Excitatory amino acid-induced changes in cyclic GMP levels in slices and cell suspensions from the cerebellum. Adv Biochem Psychopharmacol. 1981;27:317–326. [PubMed] [Google Scholar]
- Garthwaite J., Balázs R. Supersensitivity to the cyclic GMP response to glutamate during cerebellar maturation. Nature. 1978 Sep 28;275(5678):328–329. doi: 10.1038/275328a0. [DOI] [PubMed] [Google Scholar]
- Grewaal D. S., Quastel J. H. Control of synthesis and release of radioactive acetylcholine in brain slices from the rat. Effects of neurotropic drugs. Biochem J. 1973 Jan;132(1):1–14. doi: 10.1042/bj1320001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammerstad J. P., Cawthon M. L., Lytle C. R. Release of [3H]GABA from in vitro preparations: comparison of the effect of DABA and beta-alanine on the K+ and protoveratrine stimulated release of [3H]GABA from brain slices and synaptosomes. J Neurochem. 1979 Jan;32(1):195–202. doi: 10.1111/j.1471-4159.1979.tb04528.x. [DOI] [PubMed] [Google Scholar]
- Krogsgaard-Larsen P., Honoré T., Hansen J. J., Curtis D. R., Lodge D. New class of glutamate agonist structurally related to ibotenic acid. Nature. 1980 Mar 6;284(5751):64–66. doi: 10.1038/284064a0. [DOI] [PubMed] [Google Scholar]
- McLennan H., Lodge D. The antagonism of amino acid-induced excitation of spinal neurones in the cat. Brain Res. 1979 Jun 15;169(1):83–90. doi: 10.1016/0006-8993(79)90375-5. [DOI] [PubMed] [Google Scholar]
- Minchin M. C. The role of Ca2+ in the protoveratrine-induced release of gamma-aminobutyrate from rat brain slices. Biochem J. 1980 Aug 15;190(2):333–339. doi: 10.1042/bj1900333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nadi N. S., McBride W. J., Aprison M. H. Distribution of several amino acids in regions of the cerebellum of the rat. J Neurochem. 1977 Feb;28(2):453–455. doi: 10.1111/j.1471-4159.1977.tb07771.x. [DOI] [PubMed] [Google Scholar]
- Schmidt M. J., Ryan J. J., Molloy B. B. Effects of kainic acid, a cyclic analogue of glutamic acid, on cyclic nucleotide accumulation in slices of rat cerebellum. Brain Res. 1976 Aug 6;112(1):113–126. doi: 10.1016/0006-8993(76)90338-3. [DOI] [PubMed] [Google Scholar]
- Schmidt M. J., Thornberry J. F., Molloy B. B. Effects of kainate and other glutamate analogues on cyclic nucleotide accumulation in slices of rat cerebellum. Brain Res. 1977 Jan 31;121(1):182–189. doi: 10.1016/0006-8993(77)90450-4. [DOI] [PubMed] [Google Scholar]
- Sharif N. A., Roberts P. J. L-Aspartate binding sites in rat cerebellum: a comparison of the binding of L-[3H]aspartate and L-[3H]glutamate to synaptic membranes. Brain Res. 1981 May 4;211(2):293–303. doi: 10.1016/0006-8993(81)90615-6. [DOI] [PubMed] [Google Scholar]
- Sharif N. A., Roberts P. J. Problems associated with the binding of L-glutamic acid to synaptic membranes: methodological aspects. J Neurochem. 1980 Apr;34(4):779–784. doi: 10.1111/j.1471-4159.1980.tb09647.x. [DOI] [PubMed] [Google Scholar]
- Steiner A. L., Parker C. W., Kipnis D. M. Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J Biol Chem. 1972 Feb 25;247(4):1106–1113. [PubMed] [Google Scholar]
- Watkins J. C., Davies J., Evans R. H., Francis A. A., Jones A. W. Pharmacology of receptors for excitatory amino acids. Adv Biochem Psychopharmacol. 1981;27:263–273. [PubMed] [Google Scholar]
- Young A. B., Oster-Granite M. L., Herndon R. M., Snyder S. H. Glutamic acid: selective depletion by viral induced granule cell loss in hamster cerebellum. Brain Res. 1974 Jun 14;73(1):1–13. doi: 10.1016/0006-8993(74)91002-6. [DOI] [PubMed] [Google Scholar]