Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Jun;77(6):3620–3624. doi: 10.1073/pnas.77.6.3620

Target selectivity of interferon-induced human killer lymphocytes related to their Fc receptor expression.

M G Masucci, G Masucci, E Klein, W Berthold
PMCID: PMC349669  PMID: 6158052

Abstract

Human blood lymphocytes were fractionated on the basis of surface characteristics such as adherence to nylon wool and expression of erythrocyte (E) and Fc receptors. The various subsets were incubated with interferon for 3 hr. Two cell lines that differ in sensitivity to the natural killer effect, K562 and Daudi, were exposed to these lymphocytes (i.e., their sensitivity to interferon-activated killing was tested.) Cell line Daudi, with a low sensitivity to the natural killer effect, was also affected by interferon-activated killing. The efficiency of the nonadherent subsets, separated according to the expression E receptor, ranked similarly in natural killing (anti-K562) and interferon-activated killing (anti-K562 and anti-Daudi) in the following order: E receptor-negative cells, low-affinity E receptor-positive cells, and high-affinity E receptor-positive cells. Further separation on the basis of Fc receptor expression revealed a difference between the two targets. The Fc receptor-positive and -negative cells that did not express high-affinity E receptors killed K562 with similar efficiency whereas Daudi cells were more sensitive to the effect of cells devoid of Fc receptor. Results obtained with other targets suggested that T cell lines behave similarly to K562 and that the difference may be generally valid for T and B cell lines.

Full text

PDF
3620

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakacs T., Gergely P., Klein E. Characterization of cytotoxic human lymphocyte subpopulations: the role of Fc-receptor-carrying cells. Cell Immunol. 1977 Aug;32(2):317–328. doi: 10.1016/0008-8749(77)90208-8. [DOI] [PubMed] [Google Scholar]
  2. Bakacs T., Svedmyr E., Klein E. EBV-related cytotoxicity of Fc receptor negative T lymphocytes separated from the blood of infectious mononucleosis patients. Cancer Lett. 1978 Apr;4(4):185–189. doi: 10.1016/s0304-3835(78)94347-1. [DOI] [PubMed] [Google Scholar]
  3. Bakács T., Gergely P., Cornain S., Klein E. Characterization of human lymphocyte subpopulations for cytotoxicity against tumor-derived monolayer cultures. Int J Cancer. 1977 Apr 15;19(4):441–449. doi: 10.1002/ijc.2910190402. [DOI] [PubMed] [Google Scholar]
  4. Bakács T., Klein E., Yefenof E., Gergely P., Steinitz M. Human blood lymphocyte fractionation with special attention to their cytotoxic potential. Z Immunitatsforsch Immunobiol. 1978 Mar;154(2):121–134. [PubMed] [Google Scholar]
  5. Callewaert D. M., Kaplan J., Johnson D. F., Peterson W. D., Jr Spontaneous cytotoxicity of cultured human cell lines mediated by normal peripheral blood lymphocytes. II. Specificity for target antigens. Cell Immunol. 1979 Jan;42(1):103–112. doi: 10.1016/0008-8749(79)90225-9. [DOI] [PubMed] [Google Scholar]
  6. Einhorn S., Blomgren H., Strander H. Interferon and spontaneous cytotoxicity in man. I. Enhancement of the spontaneous cytotoxicity of peripheral lymphocytes by human leukocyte interferon. Int J Cancer. 1978 Oct 15;22(4):405–412. doi: 10.1002/ijc.2910220407. [DOI] [PubMed] [Google Scholar]
  7. FOLEY G. E., LAZARUS H., FARBER S., UZMAN B. G., BOONE B. A., MCCARTHY R. E. CONTINUOUS CULTURE OF HUMAN LYMPHOBLASTS FROM PERIPHERAL BLOOD OF A CHILD WITH ACUTE LEUKEMIA. Cancer. 1965 Apr;18:522–529. doi: 10.1002/1097-0142(196504)18:4<522::aid-cncr2820180418>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  8. Haynes B. F., Schooley R. T., Grouse J. E., Payling-Wright C. R., Dolin R., Fauci A. S. Characterization of thymus-derived lymphocyte subsets in acute Epstein-Barr virus-induced infectious mononucleosis. J Immunol. 1979 Feb;122(2):699–702. [PubMed] [Google Scholar]
  9. Hersey P., Edwards A., Edwards J., Adams E., Milton G. W., Nelson D. S. Specificity of cell-mediated cytotoxicity against human melanoma lines: evidence for "non-specific" killing by activated T-cells. Int J Cancer. 1975 Jul 15;16(1):173–183. doi: 10.1002/ijc.2910160119. [DOI] [PubMed] [Google Scholar]
  10. Jondal M., Spine C., Targan S. Human spontaneous killer cells selective for tumour-derived target cells. Nature. 1978 Mar 2;272(5648):62–64. doi: 10.1038/272062a0. [DOI] [PubMed] [Google Scholar]
  11. Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
  12. Kaplan J., Callewaert D. M. Expression of human T-lymphocyte antigens by natural killer cells. J Natl Cancer Inst. 1978 May;60(5):961–964. doi: 10.1093/jnci/60.5.961. [DOI] [PubMed] [Google Scholar]
  13. Klein E., Klein G., Nadkarni J. S., Nadkarni J. J., Wigzell H., Clifford P. Surface IgM-kappa specificity on a Burkitt lymphoma cell in vivo and in derived culture lines. Cancer Res. 1968 Jul;28(7):1300–1310. [PubMed] [Google Scholar]
  14. Lozzio C. B., Lozzio B. B. Cytotoxicity of a factor isolated from human spleen. J Natl Cancer Inst. 1973 Feb;50(2):535–538. doi: 10.1093/jnci/50.2.535. [DOI] [PubMed] [Google Scholar]
  15. Lundgren G., Zukoski C. F., Möller G. Differential effects of human granulocytes and lymphocytes on human fibroblasts in vitro. Clin Exp Immunol. 1968 Oct;3(8):817–836. [PMC free article] [PubMed] [Google Scholar]
  16. Martin-Chandon M. R., Vanky F., Carnaud C., Klein E. In vitro "education" on autologous human sarcoma generates non-specific killer cells. Int J Cancer. 1975 Feb 15;15(2):342–350. doi: 10.1002/ijc.2910150218. [DOI] [PubMed] [Google Scholar]
  17. Minowada J., Onuma T., Moore G. E. Rosette-forming human lymphoid cell lines. I. Establishment and evidence for origin of thymus-derived lymphocytes. J Natl Cancer Inst. 1972 Sep;49(3):891–895. [PubMed] [Google Scholar]
  18. Oehler J. R., Lindsay L. R., Nunn M. E., Holden H. T., Herberman R. B. Natural cell-mediated cytotoxicity in rats. II. In vivo augmentation of NK-cell activity. Int J Cancer. 1978 Feb 15;21(2):210–220. doi: 10.1002/ijc.2910210213. [DOI] [PubMed] [Google Scholar]
  19. Ono A., Amos D. B., Koren H. S. Selective cellular natural killing against human leukaemic T cells and thymus. Nature. 1977 Apr 7;266(5602):546–548. doi: 10.1038/266546a0. [DOI] [PubMed] [Google Scholar]
  20. PULVERTAFT J. V. A STUDY OF MALIGNANT TUMOURS IN NIGERIA BY SHORT-TERM TISSUE CULTURE. J Clin Pathol. 1965 May;18:261–273. doi: 10.1136/jcp.18.3.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Poros A., Klein E. Distinction of anti-K562 and anti-allocytotoxicity in in vitro-stimulated populations of human lymphocytes. Cell Immunol. 1979 Aug;46(1):57–68. doi: 10.1016/0008-8749(79)90245-4. [DOI] [PubMed] [Google Scholar]
  22. Saksela E., Timonen T., Cantell K. Human natural killer cell activity is augmented by interferon via recruitment of 'pre-NK' cells. Scand J Immunol. 1979;10(3):257–266. doi: 10.1111/j.1365-3083.1979.tb01348.x. [DOI] [PubMed] [Google Scholar]
  23. Santoli D., Trinchieri G., Koprowski H. Cell-mediated cytotoxicity against virus-infected target cells in humans. II. Interferon induction and activation of natural killer cells. J Immunol. 1978 Aug;121(2):532–538. [PubMed] [Google Scholar]
  24. Seeley J. K., Masucci G., Poros A., Klein E., Golub S. H. Studies on cytotoxicity generated in human mixed lymphocyte cultures. II. Anti-K562 effectors are distinct from allospecific CTL and can be generated from NK-depleted T cells. J Immunol. 1979 Sep;123(3):1303–1311. [PubMed] [Google Scholar]
  25. Svedmyr E., Jondal M. Cytotoxic effector cells specific for B Cell lines transformed by Epstein-Barr virus are present in patients with infectious mononucleosis. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1622–1626. doi: 10.1073/pnas.72.4.1622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Svet-Moldavsky G. J., Chernyakhovskaya I. J. Interferon and the interaction of allogeneic normal and immune lymphocytes with L-cells. Nature. 1967 Sep 16;215(5107):1299–1300. doi: 10.1038/2151299a0. [DOI] [PubMed] [Google Scholar]
  27. Trinchieri G., Santoli D., Dee R. R., Knowles B. B. Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Identification of the anti-viral activity as interferon and characterization of the human effector lymphocyte subpopulation. J Exp Med. 1978 May 1;147(5):1299–1313. doi: 10.1084/jem.147.5.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Virelizier J. L., Allison A. C., de Maeyer E. Production by mixed lymphocyte cultures of a type II interferon able to protect macrophages against virus infection. Infect Immun. 1977 Aug;17(2):282–285. doi: 10.1128/iai.17.2.282-285.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. West W. H., Cannon G. B., Kay H. D., Bonnard G. D., Herberman R. B. Natural cytotoxic reactivity of human lymphocytes against a myeloid cell line: characterization of effector cells. J Immunol. 1977 Jan;118(1):355–361. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES