Abstract
Assays capable of concurrently measuring small quantities of noradrenaline, dopamine, serotonin, and several of their metabolites in cerebrospinal fluid (c.s.f.) were developed by the use of high performance liquid chromatography with electrochemical detection. For comparison, cortical subarachnoid, ventricular, cisternal and lumbar c.s.f. were obtained by puncture under barbiturate anaesthesia in sheep. Basal concentrations related to the adrenergic system, including methoxyhydroxyphenylglycol (MHPG), were similar in ventricular, cisternal and lumbar c.s.f., and those of the serotoninergic metabolites, 5-hydroxyindole-3-acetylacetic acid (5-HIAA), were similar in ventricular and cisternal c.s.f. High concentrations of the dopamine metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), were found only in ventricular c.s.f. Monoamine metabolites in ventricular c.s.f. under basal conditions and after various experimental manipulations were then determined over periods of 3 months in two different breeds of sheep fitted chronically with cannulae in lateral ventricles. A dose-related accumulation of all the acidic monoamine metabolites was recorded during treatment with probenecid. The increase in 5-HIAA was linear after administration of increased doses of tryptophan and 5-hydroxytryptophan. The concentrations of dopamine, DOPAC and HVA in the ventricular c.s.f. reflected the response of the dopaminergic system to agents capable of crossing the blood-brain barrier. It is concluded that cerebral metabolism in conscious sheep could be indirectly approached by recording the concentration of end-products of dopamine metabolism in ventricular cerebrospinal fluid, obtained under conditions of minimal stress.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson G. M., Young J. G., Cohen D. J. Rapid liquid chromatographic determination of tryptophan, tyrosine, 5-hydroxyindoleacetic acid and homovanillic acid in cerebrospinal fluid. J Chromatogr. 1979 Dec 1;164(4):501–505. doi: 10.1016/s0378-4347(00)81553-4. [DOI] [PubMed] [Google Scholar]
- Andersson H., Roos B. E. 5-hydroxyindoleacetic acid and homovanillic acid in cerebrospinal fluid and brain of different rabbit breeds after treatment with probenecid. J Pharm Pharmacol. 1972 Feb;24(2):165–166. doi: 10.1111/j.2042-7158.1972.tb08955.x. [DOI] [PubMed] [Google Scholar]
- Angel C., Deluca D. C., Murphree O. D. Probenecid-induced accumulation of cyclic nucleotides, 5-hydroxyindoleacetic acid, and homovanillic acid in cisternal spinal fluid of genetically nervous dogs. Biol Psychiatry. 1976 Dec;11(6):743–753. [PubMed] [Google Scholar]
- Baber K. A., Meyers K. M., Clemmons R., Peters R. Effects of tryptophan loading on the metabolism of serotonin in the central nervous system of the sheep. Am J Vet Res. 1979 Oct;40(10):1381–1385. [PubMed] [Google Scholar]
- Ben-Jonathan N. Plasma catecholamines in fetal and neonatal rats. Life Sci. 1978 Jul 3;23(1):39–43. doi: 10.1016/0024-3205(78)90322-3. [DOI] [PubMed] [Google Scholar]
- Bulat M., Zivković B. Exchange of 5-hydroxyindoleacetic acid between the spinal cord and lumbar cerebrospinal fluid. J Physiol. 1978 Feb;275:191–197. doi: 10.1113/jphysiol.1978.sp012185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bühler H. U., da Prada M., Haefely W., Picotti G. B. Plasma adrenaline, noradrenaline and dopamine in man and different animal species. J Physiol. 1978 Mar;276:311–320. doi: 10.1113/jphysiol.1978.sp012235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis K. L., Faull K. F., Hollister L. E., Barchas J. D., Berger P. A. Alterations in cerebrospinal fluid dopamine metabolites following physostigmine infusion. Psychopharmacology (Berl) 1981;72(2):155–160. doi: 10.1007/BF00431649. [DOI] [PubMed] [Google Scholar]
- Fenstermacher J. D., Blasberg R. G., Patlak C. S. Methods for Quantifying the transport of drugs across brain barrier systems. Pharmacol Ther. 1981;14(2):217–248. doi: 10.1016/0163-7258(81)90062-0. [DOI] [PubMed] [Google Scholar]
- Gordon E. K., Markey S. P., Sherman R. L., Kopin I. J. Conjugated 3,4 dihydroxy phenyl acetic acid (DOPAC) in human and monkey cerebrospinal fluid and rat brain and the effects of probenecid treatment. Life Sci. 1976 Jun 1;18(11):1285–1292. doi: 10.1016/0024-3205(76)90206-x. [DOI] [PubMed] [Google Scholar]
- Greenfield S. A., Chubb I. W., Smith A. D. The effect of chlorpromazine on the concentration of acetylcholinesterase in the cerebrospinal fluid of rabbits. Neuropharmacology. 1979 Feb;18(2):127–132. doi: 10.1016/0028-3908(79)90052-2. [DOI] [PubMed] [Google Scholar]
- Guldberg H. C., Ashcroft G. W., Crawford T. B. Concentrations of 5-hydroxyindolylacetic acid and homovanillic acid in the cerebrospinal fluid of the dog before and during treatment with probenecid. Life Sci. 1966 Sep;5(17):1571–1575. doi: 10.1016/0024-3205(66)91026-5. [DOI] [PubMed] [Google Scholar]
- Jones C. T., Robinson R. O. Plasma catecholamines in foetal and adult sheep. J Physiol. 1975 Jun;248(1):15–33. doi: 10.1113/jphysiol.1975.sp010960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kopin I. J., Gordon E. K., Jimerson D. C., Polinsky R. J. Relation between plasma and cerebrospinal fluid levels of 3-methoxy-4-hydroxyphenylglycol. Science. 1983 Jan 7;219(4580):73–75. doi: 10.1126/science.6849119. [DOI] [PubMed] [Google Scholar]
- Laville C., Margarit J. Sur les effets neurologiques centraux du sulpiride. Pathol Biol (Paris) 1969 Jan;17(1):71–75. [PubMed] [Google Scholar]
- Le Quan-Bui K. H., Elghozi J. L., Devynck M. A., Meyer P. Rapid liquid chromatographic determination of 5-hydroxyindoles and dihydroxyphenylacetic acid in cerebrospinal fluid of the rat. Eur J Pharmacol. 1982 Jul 9;81(2):315–320. doi: 10.1016/0014-2999(82)90450-2. [DOI] [PubMed] [Google Scholar]
- Millington W. R., Wurtman R. J. Choline and physostigmine enhance haloperidol-induced HVA and DOPAC accumulation. Eur J Pharmacol. 1982 Jun 4;80(4):431–434. doi: 10.1016/0014-2999(82)90091-7. [DOI] [PubMed] [Google Scholar]
- Niemegeers C. J., Schellekens K. H., Janssen P. A. The antiemetic effects of domperidone, a novel potent gastrokinetic. Arch Int Pharmacodyn Ther. 1980 Mar;244(1):130–140. [PubMed] [Google Scholar]
- Palfreyman M. G., Huot S., Wagner J. Value of monoamine metabolite determinations in CSF as an index of their concentrations in rat brain following various pharmacological manipulations. J Pharmacol Methods. 1982 Nov;8(3):183–196. doi: 10.1016/0160-5402(82)90073-0. [DOI] [PubMed] [Google Scholar]
- Sallanon M., Buda C., Janin M., Jouvet M. 5-HT antagonists suppress sleep and delay its restoration after 5-HTP in p-chlorophenylalanine-pretreated cats. Eur J Pharmacol. 1982 Aug 13;82(1-2):29–35. doi: 10.1016/0014-2999(82)90549-0. [DOI] [PubMed] [Google Scholar]
- Schuurkes J. A., Van Nueten J. M. Effects of dopamine and its antagonist domperidone cannot be explained by an effect on alpha 1-adrenergic receptors. Arch Int Pharmacodyn Ther. 1981 Apr;250(2):324–327. [PubMed] [Google Scholar]
- Taylor P. L., Garrick N. A., Burns R. S., Tamarkin L., Murphy D. L., Markey S. P. Diurnal rhythms of serotonin in monkey cerebrospinal fluid. Life Sci. 1982 Nov 1;31(18):1993–1999. doi: 10.1016/0024-3205(82)90038-8. [DOI] [PubMed] [Google Scholar]
- Weinberger S. B., Knapp S., Mandell A. J. Failure of tryptophan load-induced increases in brain serotonin to alter food intake in the rat. Life Sci. 1978 May 8;22(18):1595–1602. doi: 10.1016/0024-3205(78)90054-1. [DOI] [PubMed] [Google Scholar]
- van Wijk M., Sebens J. B., Korf J. Probenecid-induced increase of 5-hydroxytryptamine synthesis in rat brain, as measured by formation of 5-hydroxytryptophan. Psychopharmacology (Berl) 1979 Feb 28;60(3):229–235. doi: 10.1007/BF00426660. [DOI] [PubMed] [Google Scholar]