Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1984 Jun;138(Pt 4):689–702.

Classification of neurons by dendritic branching pattern. A categorisation based on Golgi impregnation of spinal and cranial somatic and visceral afferent and efferent cells in the adult human.

T E Abdel-Maguid, D Bowsher
PMCID: PMC1164353  PMID: 6204961

Abstract

Neurons from adult human brainstem and spinal cord, fixed by immersion in formalin, were impregnated by a Golgi method and examined in sections 100 micron thick. Objective numerical criteria were used to classify completely impregnated neurons. Only the parameters mentioned below were found to be valid. Neurons in 100 micron sections were classified on the basis of (i) the primary dendrite number, indicated by a Roman numeral and called group; (ii) the dendritic branching pattern, comprising the highest branching order seen, indicated by an Arabic numeral and called category; the lowest dendritic branching order observed in complete neurons, indicated by an upper case letter and called class; and the number of branching orders seen between the two preceding, indicated by a lower case letter and called subclass. On the basis of the above characteristics, all neurons seen in the grey matter of the spinal cord and cranial nerve nuclei could be classified into thirteen 'families'. The results of other investigations (Abdel-Maguid & Bowsher, 1979, 1984) showed that this classification has functional value.

Full text

PDF
689

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdel-Maguid T. E., Bowsher D. Alpha- and gamma-motoneurons in the adult human spinal cord and somatic cranial nerve nuclei: the significance of dendroachitectonics studied by the Golgi method. J Comp Neurol. 1979 Jul 15;186(2):259–269. doi: 10.1002/cne.901860209. [DOI] [PubMed] [Google Scholar]
  2. Bowsher D. Brain, behaviour and evolution. Brain Behav Evol. 1973;8(5):386–396. doi: 10.1159/000124393. [DOI] [PubMed] [Google Scholar]
  3. Gobel S. Golgi studies in the substantia gelatinosa neurons in the spinal trigeminal nucleus. J Comp Neurol. 1975 Aug 1;162(3):397–415. doi: 10.1002/cne.901620308. [DOI] [PubMed] [Google Scholar]
  4. Gobel S. Golgi studies of the neurons in layer I of the dorsal horn of the medulla (trigeminal nucleus caudalis). J Comp Neurol. 1978 Jul 15;180(2):375–393. doi: 10.1002/cne.901800212. [DOI] [PubMed] [Google Scholar]
  5. Gobel S. Golgi studies of the neurons in layer II of the dorsal horn of the medulla (trigeminal nucleus caudalis). J Comp Neurol. 1978 Jul 15;180(2):395–413. doi: 10.1002/cne.901800213. [DOI] [PubMed] [Google Scholar]
  6. KLATZO I. A study of glia by the Golgi method. Lab Invest. 1952;1(3):345–350. [PubMed] [Google Scholar]
  7. Kerr F. W. Neuroanatomical substrates of nociception in the spinal cord. Pain. 1975 Dec;1(4):325–356. doi: 10.1016/0304-3959(75)90072-X. [DOI] [PubMed] [Google Scholar]
  8. LEONTOVICH T. A., ZHUKOVA G. P. THE SPECIFICITY OF THE NEURONAL STRUCTURE AND TOPOGRAPHY OF THE RETICULAR FORMATION IN THE BRAIN AND SPINAL CORD OF CARNIVORA. J Comp Neurol. 1963 Dec;121:347–379. doi: 10.1002/cne.901210305. [DOI] [PubMed] [Google Scholar]
  9. MOREST D. K. THE NEURONAL ARCHITECTURE OF THE MEDIAL GENICULATE BODY OF THE CAT. J Anat. 1964 Oct;98:611–630. [PMC free article] [PubMed] [Google Scholar]
  10. Mannen H. Reconstruction of axonal trajectory of individual neurons in the spinal cord using Golgi-stained serial sections. J Comp Neurol. 1975 Feb 1;159(3):357–373. doi: 10.1002/cne.901590305. [DOI] [PubMed] [Google Scholar]
  11. Mannen H., Sugiura Y. Reconstruction of neurons of dorsal horn proper using Golgi-stained serial sections. J Comp Neurol. 1976 Jul 15;168(2):303–312. doi: 10.1002/cne.901680205. [DOI] [PubMed] [Google Scholar]
  12. Mehraein P., Yamada M., Tarnowska-Dziduszko E. Quantitative study on dendrites and dendritic spines in Alzheimer's disease and senile dementia. Adv Neurol. 1975;12:453–458. [PubMed] [Google Scholar]
  13. Percheron G. Quantitative analysis of dendritic branching. II. Fundamental dendritic numbers as a tool for the study of neuronal groups. Neurosci Lett. 1979 Oct;14(2-3):295–302. doi: 10.1016/0304-3940(79)96164-0. [DOI] [PubMed] [Google Scholar]
  14. RAMON-MOLINER E. An attempt at classifying nerve cells on the basis of their dendritic patterns. J Comp Neurol. 1962 Oct;119:211–227. doi: 10.1002/cne.901190207. [DOI] [PubMed] [Google Scholar]
  15. Réthelyi M., Szentágothai J. The large synaptic complexes of the substantia gelatinosa. Exp Brain Res. 1969;7(3):258–274. doi: 10.1007/BF00239033. [DOI] [PubMed] [Google Scholar]
  16. SZENTAGOTHAI J. NEURONAL AND SYNAPTIC ARRANGEMENT IN THE SUBSTANTIA GELATINOSA ROLANDI. J Comp Neurol. 1964 Apr;122:219–239. doi: 10.1002/cne.901220207. [DOI] [PubMed] [Google Scholar]
  17. Scheibel M. E., Scheibel A. B. A structural analysis of spinal interneurons and Renshaw cells. UCLA Forum Med Sci. 1969;11:159–208. [PubMed] [Google Scholar]
  18. Scheibel M. E., Scheibel A. B. Terminal axonal patterns in cat spinal cord. II. The dorsal horn. Brain Res. 1968 Jun;9(1):32–58. doi: 10.1016/0006-8993(68)90256-4. [DOI] [PubMed] [Google Scholar]
  19. VAISAMRUAT V., HESS A. Golgi impregnation after formalin fixation. Stain Technol. 1953 Nov;28(6):303–304. doi: 10.3109/10520295309105560. [DOI] [PubMed] [Google Scholar]
  20. Williams R. S., Ferrante R. J., Caviness V. S., Jr The Golgi rapid method in clinical neuropathology: the morphologic consequences of suboptimal fixation. J Neuropathol Exp Neurol. 1978 Jan;37(1):13–33. doi: 10.1097/00005072-197801000-00002. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES