Abstract
Herpes simplex virus (HSV) types 1 and 2 have been inactivated in vitro using low concentrations of methylene blue (MB), light (lambda) plus electricity (E), or hematoporphyrin derivative (HPD) plus lambda. Both techniques introduce single strand interruptions into viral DNA, but do not make double strand ruptions into viral DNA, but do not make double strand breaks. MB, lambda plus E-treated virions adsorb normally to and penetrate susceptible cells, whereas HSV inactivated with HPC and light does not. This difference is emphasized by the induction of new viral and cell DNA synthesis after infection with MB, lambda plus E-treated virions, whereas only cell, DNA but no HSV DNA, is made subsequent to HPD and lambda exposure. These observations reflect disparate mechanisms of viral inactivation. A block(s) in viral maturation, subsequent to viral DNA synthesis, occurs as a result of treatment with MB, lambda and E, whereas HPD plus lambda-treated particles fail to enter a susceptible cell, and therefore do not initiate an infection.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURGI E., HERSHEY A. D. Sedimentation rate as a measure of molecular weight of DNA. Biophys J. 1963 Jul;3:309–321. doi: 10.1016/s0006-3495(63)86823-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bader C., Crumpacker C. S., Schnipper L. E., Ransil B., Clark J. E., Arndt K., Freedberg I. M. The natural history of recurrent facial-oral infection with herpes simplex virus. J Infect Dis. 1978 Dec;138(6):897–905. doi: 10.1093/infdis/138.6.897. [DOI] [PubMed] [Google Scholar]
- Bodaness R. S., Chan P. C. Singlet oxygen as a mediator in the hematoporphyrin-catalyzed photooxidation of NADPH to NADP+ in deuterium oxide. J Biol Chem. 1977 Dec 10;252(23):8554–8560. [PubMed] [Google Scholar]
- Burnett J. P., Summers A. O., Harrington J. A., Dwyer A. C. Production of highly labeled adenoviruses. Appl Microbiol. 1968 Aug;16(8):1245–1250. doi: 10.1128/am.16.8.1245-1250.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cannistraro S., Van de Vorst A. Photosensitization by hematoporphyrin: ESP evidence for free radical induction in unsaturated fatty acids and for singlet oxygen production. Biochem Biophys Res Commun. 1977 Feb 7;74(3):1177–1185. doi: 10.1016/0006-291x(77)91642-4. [DOI] [PubMed] [Google Scholar]
- HIATT C. W., KAUFMAN E., HELPRIN J. J., BARON S. Inactivation of viruses by the photodynamic action of toluidine blue. J Immunol. 1960 May;84:480–484. [PubMed] [Google Scholar]
- Henry P. H., Schnipper L. E., Samaha R. J., Crumpacker C. S., Lewis A. M., Jr, Levine A. S. Studies of nondefective adenovirus 2-simian virus 40 hybrid viruses. VI. Characterization of the DNA from five nondefective hybrid viruses. J Virol. 1973 May;11(5):665–671. doi: 10.1128/jvi.11.5.665-671.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hochberg E., Becker Y. Adsorption, penetration and uncoating of herpes simplex virus. J Gen Virol. 1968 Mar;2(2):231–241. doi: 10.1099/0022-1317-2-2-231. [DOI] [PubMed] [Google Scholar]
- Khan N. C., Melnick J. L., Biswal N. Photodynamic treatment of herpes simplex virus during its replicative cycle. J Virol. 1977 Jan;21(1):16–23. doi: 10.1128/jvi.21.1.16-23.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kieff E. D., Bachenheimer S. L., Roizman B. Size, composition, and structure of the deoxyribonucleic acid of herpes simplex virus subtypes 1 and 2. J Virol. 1971 Aug;8(2):125–132. doi: 10.1128/jvi.8.2.125-132.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAGNUS I. A., JARRETT A., PRANKERD T. A., RIMINGTON C. Erythropoietic protoporphyria. A new porphyria syndrome with solar urticaria due to protoporphyrinaemia. Lancet. 1961 Aug 26;2(7200):448–451. doi: 10.1016/s0140-6736(61)92427-8. [DOI] [PubMed] [Google Scholar]
- Muller S. A., Herrmann E. C., Jr, Winkelmann R. K. Herpes simplex infections in hematologic malignancies. Am J Med. 1972 Jan;52(1):102–114. doi: 10.1016/0002-9343(72)90012-5. [DOI] [PubMed] [Google Scholar]
- Nahmias A. J., Roizman B. Infection with herpes-simplex viruses 1 and 2. 1. N Engl J Med. 1973 Sep 27;289(13):667–674. doi: 10.1056/NEJM197309272891305. [DOI] [PubMed] [Google Scholar]
- Nilsson R., Merkel P. B., Kearns D. R. Unambiguous evidence for the participation of singlet oxygen ( 1 ) in photodynamic oxidation of amino acids. Photochem Photobiol. 1972 Aug;16(2):117–124. doi: 10.1111/j.1751-1097.1972.tb07343.x. [DOI] [PubMed] [Google Scholar]
- Rapp F., Li J. L., Jerkofsky M. Transformation of mammalian cells by DNA-containing viruses following photodynamic inactivation. Virology. 1973 Oct;55(2):339–346. doi: 10.1016/0042-6822(73)90173-6. [DOI] [PubMed] [Google Scholar]
- Stalder H., Oxman M. N., Herrmann K. L. Herpes simplex virus microneutralization: a simplification of the test. J Infect Dis. 1975 Apr;131(4):423–430. doi: 10.1093/infdis/131.4.423. [DOI] [PubMed] [Google Scholar]
- Varmus H. E., Vogt P. K., Bishop J. M. Integration of deoxyribonucleic acid specific for Rous sarcoma virus after infection of permissive and nonpermissive hosts. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3067–3071. doi: 10.1073/pnas.70.11.3067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WALLIS C., MELNICK J. L. IRREVERSIBLE PHOTOSENSITIZATION OF VIRUSES. Virology. 1964 Aug;23:520–527. doi: 10.1016/0042-6822(64)90236-3. [DOI] [PubMed] [Google Scholar]
