Abstract
Peritoneal macrophages from mice that have received two separate intraperitoneal injections of the sterile, soluble oxidant NaIO4 form macrophage polykaryons (MPs) in vitro, but peritoneal macrophage from untreated, peptone-treated, or mice infected with bacille Calmette-Guerin (BCG) do not. The polykaryons are noted after 18-24 hours of culture and continue to form over a 60-72-hour period. The MPs do not form if the macrophage density is less than 4 x 10(3)/sq mm. The polykaryons appear in vitro only in cultures with less than or equal to 1-5 ng/ml lipopolysaccharide (LPS) (amounts of LPS that commonly contaminate culture medium and serum). Hydrocortisone hemisuccinate (2.6 x 10(-9) M) inhibits MP formation in vitro. Lymphocytes do not influence the polykaryon formation, and supernatants from MP cultures do not cause fusion of other macrophages. Microcinephotography demonstrates fusion of the macrophages to form the large polykaryons, which are less motile than uninuclear macrophages. The polykaryons assume different forms; generally, the nuclei (mean, 16.8 nuclei/MP; range, 2-137 nuclei/MP) are centrally located, and the nuclear chromatin of all nuclei appears similar. The MPs phagocytize polystyrene spheres and glutaraldehyde-treated erythrocytes to the same degree as do uninuclear macrophages when determined as particles per nucleus (phagocytic index), but their phagocytic index of IgG-coated erythrocytes is decreased. Peritoneal macrophages from mice given double injections of NaIO4 are nontumoricidal in the absence of LPS, but LPS, in amounts sufficient to inhibit polykaryon formation, renders the macrophages tumoricidal. Populations of macrophages containing MPs formed over 3 days of cultures also respond to LPS or macrophage activating factor (MAF) to demonstrate enhanced tumoricidal activity.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams D. O. The granulomatous inflammatory response. A review. Am J Pathol. 1976 Jul;84(1):164–192. [PMC free article] [PubMed] [Google Scholar]
- Bressler J. P., Thurman G. B., Krzych U., Goldstein A. L., Trivers G., Strausser H. R. Lymphokines secreted from sodium periodate-treated lymphocytes. Cell Immunol. 1980 Sep 1;54(2):274–283. doi: 10.1016/0008-8749(80)90209-9. [DOI] [PubMed] [Google Scholar]
- Chambers T. J. Fusion of hamster macrophages induced by lectins. J Pathol. 1977 Sep;123(1):53–61. doi: 10.1002/path.1711230107. [DOI] [PubMed] [Google Scholar]
- Chambers T. J. Studies on the phagocytic capacity of macrophage polykaryons. J Pathol. 1977 Oct;123(2):65–77. doi: 10.1002/path.1711230202. [DOI] [PubMed] [Google Scholar]
- Chambers T. J. The mechanism of fusion of hamster macrophages induced by antimacrophage serum. J Pathol. 1977 Jul;122(3):163–173. doi: 10.1002/path.1711220308. [DOI] [PubMed] [Google Scholar]
- Galindo B., Lazdins J., Castillo R. Fusion of normal rabbit alveolar macrophages induced by supernatant fluids from BCG-sensitized lymph node cells after elicitation by antigen. Infect Immun. 1974 Feb;9(2):212–216. doi: 10.1128/iai.9.2.212-216.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giles R. E., Ruddle F. H. Production of Sendai virus for cell fusion. In Vitro. 1973 Sep-Oct;9(2):103–107. doi: 10.1007/BF02616007. [DOI] [PubMed] [Google Scholar]
- Gordon S., Cohn Z. Macrophage-melanocyte heterokaryons. I. Preparation and properties. J Exp Med. 1970 May 1;131(5):981–1003. doi: 10.1084/jem.131.5.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon S., Cohn Z. Macrophage-melanoma cell heterokaryons. 3. The activation of macrophage DNA synthesis. Studies with inhibitors of protein synthesis and with synchronized melanoma cells. J Exp Med. 1971 Oct 1;134(4):935–946. doi: 10.1084/jem.134.4.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon S., Cohn Z. Macrophage-melanoma cell heterokaryons. IV. Unmasking the macrophage-specific membrane receptor. J Exp Med. 1971 Oct 1;134(4):947–962. doi: 10.1084/jem.134.4.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hibbs J. B., Jr, Taintor R. R., Chapman H. A., Jr, Weinberg J. B. Macrophage tumor killing: influence of the local environment. Science. 1977 Jul 15;197(4300):279–282. doi: 10.1126/science.327547. [DOI] [PubMed] [Google Scholar]
- Ishida N., Homma M. Sendai virus. Adv Virus Res. 1978;23:349–383. doi: 10.1016/s0065-3527(08)60103-7. [DOI] [PubMed] [Google Scholar]
- KAPLOW L. S. SIMPLIFIED MYELOPEROXIDASE STAIN USING BENZIDINE DIHYDROCHLORIDE. Blood. 1965 Aug;26:215–219. [PubMed] [Google Scholar]
- Mariano M., Spector W. G. The formation and properties of macrophage polykaryons (inflammatory giant cells). J Pathol. 1974 May;113(1):1–19. doi: 10.1002/path.1711130102. [DOI] [PubMed] [Google Scholar]
- Novogrodsky A. Induction of lymphocyte cytotoxicity by modification of the effector or target cells with periodate or with neuraminidase and galactose oxidase. J Immunol. 1975 Mar;114(3):1089–1093. [PubMed] [Google Scholar]
- Novogrodsky A., Katchalski E. Membrane site modified on induction of the transformation of lymphocytes by periodate. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3207–3210. doi: 10.1073/pnas.69.11.3207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Papadimitriou J. M., Kingston K. J. The locomotory behaviour of the multinucleate giant cells of foreign body reactions. J Pathol. 1977 Jan;121(1):27–36. doi: 10.1002/path.1711210105. [DOI] [PubMed] [Google Scholar]
- Papadimitriou J. M. The influence of the thymus on multinucleate giant cell formation. J Pathol. 1976 Mar;118(3):153–156. doi: 10.1002/path.1711180304. [DOI] [PubMed] [Google Scholar]
- Parks D. E., Weiser R. S. The role of phagocytosis and natural lymphokines in the fusion of alveolar macrophages to form Langhans giant cells. J Reticuloendothel Soc. 1975 Apr;17(4):219–228. [PubMed] [Google Scholar]
- Piessens W. F. Increased binding and killing of neuraminidase-galactose oxidase-treated tumor cells by normal macrophages. J Immunol. 1977 Jul;119(1):167–172. [PubMed] [Google Scholar]
- Poste G., Kirsh R. Rapid decay of tumoricidal activity and loss of responsiveness to lymphokines in inflammatory macrophages. Cancer Res. 1979 Jul;39(7 Pt 1):2582–2590. [PubMed] [Google Scholar]
- Poste G. The tumoricidal properties of inflammatory tissue macrophages and multinucleate giant cells. Am J Pathol. 1979 Aug;96(2):595–610. [PMC free article] [PubMed] [Google Scholar]
- Postlethwaite A. E., Jackson B. K., Beachey E. H., Kang A. H. Formation of multinucleated giant cells from human monocyte precursors. Mediation by a soluble protein from antigen-and mitogen-stimulated lymphocytes. J Exp Med. 1982 Jan 1;155(1):168–178. doi: 10.1084/jem.155.1.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rottem S. The effect of lipid A on the fluidity and permeability properties of phospholipid dispersions. FEBS Lett. 1978 Nov 1;95(1):121–124. doi: 10.1016/0014-5793(78)80065-9. [DOI] [PubMed] [Google Scholar]
- Sone S., Bucana C., Hoyer L. C., Fidler I. J. Kinetics and ultrastructural studies of the induction of rat alveolar macrophage fusion by mediators released from mitogen-stimulated lymphocytes. Am J Pathol. 1981 May;103(2):234–246. [PMC free article] [PubMed] [Google Scholar]
- Stein G. H., Yanishevsky R. Autoradiography. Methods Enzymol. 1979;58:279–292. doi: 10.1016/s0076-6879(79)58143-9. [DOI] [PubMed] [Google Scholar]
- Stewart C. C., Adles C., Hibbs J. B., Jr Cloned macrophages can be induced to kill tumor cells. J Reticuloendothel Soc. 1978 Aug;24(2):107–113. [PubMed] [Google Scholar]
- Sutton J. S., Weiss L. Transformation of monocytes in tissue culture into macrophages, epithelioid cells, and multinucleated giant cells. An electron microscope study. J Cell Biol. 1966 Feb;28(2):303–332. doi: 10.1083/jcb.28.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEISSMANN G., DINGLE J. Release of lysosomal protease by ultraviolet irradiation and inhibition by hydrocortisone. Exp Cell Res. 1961 Oct;25:207–210. doi: 10.1016/0014-4827(61)90328-7. [DOI] [PubMed] [Google Scholar]
- Warfel A. H., Hadden J. W. Macrophage fusion factor elicited from BGG-sensitized lymphocytes. Am J Pathol. 1978 Dec;93(3):753–770. [PMC free article] [PubMed] [Google Scholar]
- Weinberg J. B., Chapman H. A., Jr, Hibbs J. B., Jr Characterization of the effects of endotoxin on macrophage tumor cell killing. J Immunol. 1978 Jul;121(1):72–80. [PubMed] [Google Scholar]
- Weinberg J. B., Hibbs J. B., Jr Endocytosis of red blood cells or haemoglobin by activated macrophages inhibits their tumoricidal effect. Nature. 1977 Sep 15;269(5625):245–247. doi: 10.1038/269245a0. [DOI] [PubMed] [Google Scholar]
- Weinberg J. B., Hibbs J. B., Jr Enhanced macrophage tumoricidal activity and tumor suppression or regression caused by heat-killed Candida albicans. J Natl Cancer Inst. 1979 Nov;63(5):1273–1278. [PubMed] [Google Scholar]
- Weinberg J. B., Hibbs J. B., Jr In vitro modulation of macrophage tumoricidal activity: partial characterization of a macrophage-activating factor(s) in supernatants of NaIO4-treated peritoneal cells. J Reticuloendothel Soc. 1979 Sep;26(3):283–293. [PubMed] [Google Scholar]
- Weinberg J. B. In vivo modulation of macrophage tumoricidal activity: enhanced tumor cell killing by peritoneal macrophages from mice given injections of sodium periodate. J Natl Cancer Inst. 1981 Mar;66(3):529–533. [PubMed] [Google Scholar]
- Yam L. T., Li C. Y., Crosby W. H. Cytochemical identification of monocytes and granulocytes. Am J Clin Pathol. 1971 Mar;55(3):283–290. doi: 10.1093/ajcp/55.3.283. [DOI] [PubMed] [Google Scholar]