Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1983 Nov;344:243–255. doi: 10.1113/jphysiol.1983.sp014937

Accurate regeneration of an electrical synapse between two leech neurones after destruction of the ensheathing glial cell.

E J Elliott, K J Muller
PMCID: PMC1193838  PMID: 6317851

Abstract

An interneurone, the S cell in the central nervous system of the leech, regenerates its severed axon and forms an electrical synapse with its target, another S cell, entirely within the ensheathment of two glial cells. After the two glial cells were killed selectively by intracellular injection of protease, axonal regeneration and synapse formation occurred in a normal fashion during the month following nerve injury. Soon after reconnexion of S cells, the conduction of impulses across the non-rectifying electrical junction between the cells was more reliable from the target than into it from the thinner regenerating axon. The distal segments of severed S-cell axons survived for weeks or months after destruction of their glial cells, indicating that the ensheathing glia is not required for long-term survival of axon segments. The distal axon segment of the S cell remained connected to the target axon at the normal region of synapse midway between ganglia within the nerve cord. In about half the cases in which reconnexion between injured S cell and target S cell occurred between 10 and 25 days following nerve crush, the regenerating neurone had formed an electrical synapse with its severed distal axon and had thereby become reconnected, indirectly, with its target. In the other cases, reconnexion was by direct contact. By 4 weeks, the proportion of injured S cells that were coupled and making direct contact with their targets rose to more than 80% of the total population, indicating that regeneration continued until the two S cells contacted one another directly. This is similar to the course of S-cell regeneration in the presence of the ensheathing glia. Microscopy of the regenerating neurone and both its distal axon segment and its target showed that the site of synapse formation in the absence of the usual glial sheath was normal. Fluorescence microscopy following intracellular injection of Lucifer Yellow dye, which crosses between S cells at the electrical synapse, showed that the regenerated synapse formed specifically between S cells. Moreover, the target did not form alternative synapses when regeneration failed.

Full text

PDF
243

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birse S. C., Bittner G. D. Regeneration of earthworm giant axons following transection or ablation. J Neurophysiol. 1981 Apr;45(4):724–742. doi: 10.1152/jn.1981.45.4.724. [DOI] [PubMed] [Google Scholar]
  2. Blackshaw S. E., Nicholls J. G., Parnas I. Expanded receptive fields of cutaneous mechanoreceptor cells after single neurone deletion in leech central nervous system. J Physiol. 1982 May;326:261–268. doi: 10.1113/jphysiol.1982.sp014190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bowling D., Nicholls J., Parnas I. Destruction of a single cell in the central nervous system of the leech as a means of analysing its connexions and functional role. J Physiol. 1978 Sep;282:169–180. doi: 10.1113/jphysiol.1978.sp012455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carbonetto S., Muller K. J. A regenerating neurone in the leech can form an electrical synapse on its severed axon segment. Nature. 1977 Jun 2;267(5610):450–452. doi: 10.1038/267450a0. [DOI] [PubMed] [Google Scholar]
  5. Clark R. D. Structural and functional changes in an identified cricket neuron after separation from the soma. I. Structural changes. J Comp Neurol. 1976 Nov 15;170(2):253–265. doi: 10.1002/cne.901700209. [DOI] [PubMed] [Google Scholar]
  6. Clark R. D. Structural and functional changes in an identified cricket neuron after separation from the soma. II. Functional changes. J Comp Neurol. 1976 Nov 15;170(2):267–277. doi: 10.1002/cne.901700210. [DOI] [PubMed] [Google Scholar]
  7. Elliot E. J., Muller K. J. Long-term survival of glial segments during nerve regeneration in the leech. Brain Res. 1981 Aug 10;218(1-2):99–113. doi: 10.1016/0006-8993(81)90991-4. [DOI] [PubMed] [Google Scholar]
  8. Elliot E. J., Muller K. J. Synapses between neurons regenerate accurately after destruction of ensheathing glial cells in the leech. Science. 1982 Mar 5;215(4537):1260–1262. doi: 10.1126/science.7058345. [DOI] [PubMed] [Google Scholar]
  9. Frank E., Jansen J. K., Rinvik E. A multisomatic axon in the central nervous system of the leech. J Comp Neurol. 1975 Jan 1;159(1):1–13. doi: 10.1002/cne.901590102. [DOI] [PubMed] [Google Scholar]
  10. Fuchs P. A., Nicholls J. G., Ready D. F. Membrane properties and selective connexions of identified leech neurones in culture. J Physiol. 1981 Jul;316:203–223. doi: 10.1113/jphysiol.1981.sp013783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gainer H., Tasaki I., Lasek R. J. Evidence for the glia-neuron protein transfer hypothesis from intracellular perfusion studies of squid giant axons. J Cell Biol. 1977 Aug;74(2):524–530. doi: 10.1083/jcb.74.2.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Globus A., Lux H. D., Schubert P. Transfer of amino acids between neuroglia cells and neurons in the leech ganglion. Exp Neurol. 1973 Jul;40(1):104–113. doi: 10.1016/0014-4886(73)90127-1. [DOI] [PubMed] [Google Scholar]
  13. Guth L., Barrett C. P., Donati E. J., Deshpande S. S., Albuquerque E. X. Histopathological reactions an axonal regeneration in the transected spinal cord of Hibernating squirrels. J Comp Neurol. 1981 Dec 1;203(2):297–308. doi: 10.1002/cne.902030209. [DOI] [PubMed] [Google Scholar]
  14. Hoy R. R., Bittner G. D., Kennedy D. Regeneration in crustacean motoneurons: evidence for axonal fusion. Science. 1967 Apr 14;156(3772):251–252. doi: 10.1126/science.156.3772.251. [DOI] [PubMed] [Google Scholar]
  15. Jansen J. K., Jr, Muller K. J., Nicholls J. G. Persistent modification of synaptic interactions between sensory and motor nerve cells following discrete lesions in the central nervous system of the leech. J Physiol. 1974 Oct;242(2):289–305. doi: 10.1113/jphysiol.1974.sp010708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Krasne F. B., Lee S. H. Regenerating afferents establish synapses with a target neuron that lacks its cell body. Science. 1977 Nov 4;198(4316):517–519. doi: 10.1126/science.910145. [DOI] [PubMed] [Google Scholar]
  17. Krasne F. B., Lee S. H. Survival of functional synapses on crustacean neurons lacking cell bodies. Brain Res. 1977 Jan 31;121(1):43–57. doi: 10.1016/0006-8993(77)90437-1. [DOI] [PubMed] [Google Scholar]
  18. Kuffler S. W., Nicholls J. G. The physiology of neuroglial cells. Ergeb Physiol. 1966;57:1–90. [PubMed] [Google Scholar]
  19. Lasek R. J., Gainer H., Barker J. L. Cell-to-cell transfer of glial proteins to the squid giant axon. The glia-neuron protein trnasfer hypothesis. J Cell Biol. 1977 Aug;74(2):501–523. doi: 10.1083/jcb.74.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Matsumoto D. E., Scalia F. Long-term survival of centrally projecting axons in the optic nerve of the frog following destruction of the retina. J Comp Neurol. 1981 Oct 10;202(1):135–155. doi: 10.1002/cne.902020112. [DOI] [PubMed] [Google Scholar]
  21. McMahan U. J., Edgington D. R., Kuffler D. P. Factors that influence regeneration of the neuromuscular junction. J Exp Biol. 1980 Dec;89:31–42. doi: 10.1242/jeb.89.1.31. [DOI] [PubMed] [Google Scholar]
  22. Meyer M. R., Bittner G. D. Biochemical studies of trophic dependences in crayfish giant axons. Brain Res. 1978 Mar 24;143(2):213–232. doi: 10.1016/0006-8993(78)90565-6. [DOI] [PubMed] [Google Scholar]
  23. Meyer M. R., Bittner G. D. Histological studies of trophic dependencies in crayfish giant axons. Brain Res. 1978 Mar 24;143(2):195–211. doi: 10.1016/0006-8993(78)90564-4. [DOI] [PubMed] [Google Scholar]
  24. Muller K. J., Carbonetto S. The morphological and physiological properties of a regenerating synapse in the C.N.S. of the leech. J Comp Neurol. 1979 Jun 1;185(3):485–516. doi: 10.1002/cne.901850305. [DOI] [PubMed] [Google Scholar]
  25. Muller K. J., McMahan U. J. The shapes of sensory and motor neurones and the distribution of their synapses in ganglia of the leech: a study using intracellular injection of horseradish peroxidase. Proc R Soc Lond B Biol Sci. 1976 Nov 12;194(1117):481–499. doi: 10.1098/rspb.1976.0090. [DOI] [PubMed] [Google Scholar]
  26. Muller K. J., Scott S. A. Correct axonal regeneration after target cell removal in the central nervous system of the leech. Science. 1979 Oct 5;206(4414):87–89. doi: 10.1126/science.482931. [DOI] [PubMed] [Google Scholar]
  27. Muller K. J., Scott S. A. Transmission at a 'direct' electrical connexion mediated by an interneurone in the leech. J Physiol. 1981 Feb;311:565–583. doi: 10.1113/jphysiol.1981.sp013605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Parnas I., Bowling D. Killing of single neurons by intracellular injection of proteolytic enzymes. Nature. 1977 Dec 15;270(5638):626–628. doi: 10.1038/270626a0. [DOI] [PubMed] [Google Scholar]
  29. Parnas I. Differential block at high frequency of branches of a single axon innervating two muscles. J Neurophysiol. 1972 Nov;35(6):903–914. doi: 10.1152/jn.1972.35.6.903. [DOI] [PubMed] [Google Scholar]
  30. Peracchia C. Direct communication between axons and sheath glial cells in crayfish. Nature. 1981 Apr 16;290(5807):597–598. doi: 10.1038/290597a0. [DOI] [PubMed] [Google Scholar]
  31. Sanes J. R., Marshall L. M., McMahan U. J. Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons at original synaptic sites. J Cell Biol. 1978 Jul;78(1):176–198. doi: 10.1083/jcb.78.1.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Scott S. A., Muller K. J. Synapse regeneration and signals for directed axonal growth in the central nervous system of the leech. Dev Biol. 1980 Dec;80(2):345–363. doi: 10.1016/0012-1606(80)90410-8. [DOI] [PubMed] [Google Scholar]
  33. Stewart W. W. Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell. 1978 Jul;14(3):741–759. doi: 10.1016/0092-8674(78)90256-8. [DOI] [PubMed] [Google Scholar]
  34. Van Essen D. C., Jansen J. K. The specificity of re-innervation by identified sensory and motor neurons in the leech. J Comp Neurol. 1977 Feb 15;171(4):433–454. doi: 10.1002/cne.901710402. [DOI] [PubMed] [Google Scholar]
  35. Viancour T. A., Bittner G. D., Ballinger M. L. Selective transfer of Lucifer yellow CH from axoplasm to adaxonal glia. Nature. 1981 Sep 3;293(5827):65–67. doi: 10.1038/293065a0. [DOI] [PubMed] [Google Scholar]
  36. Wallace B. G., Adal M. N., Nicholls J. G. Regeneration of synaptic connections by sensory neurons in leech ganglia maintained in culture. Proc R Soc Lond B Biol Sci. 1977 Dec 30;199(1137):567–585. doi: 10.1098/rspb.1977.0164. [DOI] [PubMed] [Google Scholar]
  37. Yau K. W. Receptive fields, geometry and conduction block of sensory neurones in the central nervous system of the leech. J Physiol. 1976 Dec;263(3):513–538. doi: 10.1113/jphysiol.1976.sp011643. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES