Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1983 Nov;46(5):1243–1245. doi: 10.1128/aem.46.5.1243-1245.1983

Detection of Salmonella spp. in milk by using Felix-O1 bacteriophage and high-pressure liquid chromatography.

D C Hirsh, L D Martin
PMCID: PMC239551  PMID: 6360047

Abstract

A method is described whereby the presence of less than five salmonellae was detected per milliliter of milk within 24 h of sample collection. Salmonellae were removed from milk by means of electropositive large-pore filters. Eluates from the filters were analyzed for the presence of Salmonella spp. by Felix-O1 bacteriophage and high-pressure liquid chromatographic techniques. The method gave only a positive response when salmonellae were present in the milk. Of the serotypes and strains of Salmonella spp. tested, Salmonella dublin (10 strains), Salmonella typhimurium (5 strains), Salmonella anatum, Salmonella krefeld, and Salmonella saint-paul gave positive responses. One strain of Salmonella agona (three strains tested) and three strains of Salmonella enteritidis (seven strains tested) were not detectable by the method described herein.

Full text

PDF
1243

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carlson V. L., Snoeyenbos G. H., McKie B. A., Smyser C. F. A comparison of incubation time and temperature for the isolation of salmonella. Avian Dis. 1967 May;11(2):217–225. [PubMed] [Google Scholar]
  2. Gerba C. P., Farrah S. R., Goyal S. M., Wallis C., Melnick J. L. Concentration of enteroviruses from large volumes of tap water, treated sewage, and seawater. Appl Environ Microbiol. 1978 Mar;35(3):540–548. doi: 10.1128/aem.35.3.540-548.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Goyal S. M., Gerba C. P. Simple method for concentration of bacteria from large volumes of tap water. Appl Environ Microbiol. 1980 Nov;40(5):912–916. doi: 10.1128/aem.40.5.912-916.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goyal S. M., Hanssen H., Gerba C. P. Simple method for the concentration of influenza virus from allantoic fluid on microporous filters. Appl Environ Microbiol. 1980 Mar;39(3):500–504. doi: 10.1128/aem.39.3.500-504.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gunnarsson A., Hurvell B., Thal E. Recent experiences with the Salmonella-O-1-phage in routine diagnostic work. Zentralbl Bakteriol Orig A. 1977;237(2-3):222–227. [PubMed] [Google Scholar]
  6. Hirsh D. C., Martin L. D. Rapid detection of Salmonella spp. by using Felix-O1 bacteriophage and high-performance liquid chromatography. Appl Environ Microbiol. 1983 Jan;45(1):260–264. doi: 10.1128/aem.45.1.260-264.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hou K., Gerba C. P., Goyal S. M., Zerda K. S. Capture of latex beads, bacteria, endotoxin, and viruses by charge-modified filters. Appl Environ Microbiol. 1980 Nov;40(5):892–896. doi: 10.1128/aem.40.5.892-896.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kallings L. O., Lindberg A. A. Resistance to Felix 0-1 phage in salmonella bacteria. Acta Pathol Microbiol Scand. 1967;70(3):455–460. doi: 10.1111/j.1699-0463.1967.tb01313.x. [DOI] [PubMed] [Google Scholar]
  9. Kallings L. O. Sensitivity of various salmonella strains to felix 0-1 phage. Acta Pathol Microbiol Scand. 1967;70(3):446–454. doi: 10.1111/j.1699-0463.1967.tb01312.x. [DOI] [PubMed] [Google Scholar]
  10. Krysinski E. P., Heimsch R. C. Use of enzyme-labeled antibodies to detect Salmonella in foods. Appl Environ Microbiol. 1977 Apr;33(4):947–954. doi: 10.1128/aem.33.4.947-954.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lindberg A. A., Holme T. Influence of O side chains on the attachment of the Felix O-1 bacteriophage to Salmonella bacteria. J Bacteriol. 1969 Aug;99(2):513–519. doi: 10.1128/jb.99.2.513-519.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Males B. M., Stocker B. A. Escherichia coli K317, formerly used to define colicin group E2, produces colicin E7, is immune to colicin E2, and carries a bacteriophage-restricting conjugative plasmid. J Bacteriol. 1980 Nov;144(2):524–531. doi: 10.1128/jb.144.2.524-531.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Minnich S. A., Hartman P. A., Heimsch R. C. Enzyme immunoassay for detection of Salmonellae in foods. Appl Environ Microbiol. 1982 Apr;43(4):877–893. doi: 10.1128/aem.43.4.877-893.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Morris G. K., Dunn C. G. Influence of incubation temperature and sodium heptadecyl sulfate (Tergitol No. 7) on the isolation of salmonellae from pork sausage. Appl Microbiol. 1970 Aug;20(2):192–195. doi: 10.1128/am.20.2.192-195.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. STRAKA R. P., STOKES J. L. Metabolic injury to bacteria at low temperatures. J Bacteriol. 1959 Aug;78:181–185. doi: 10.1128/jb.78.2.181-185.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sanborn W. R., Lesmana M., Edwards E. A. Enrichment culture coagglutination test for rapid, low-cost diagnosis of salmonellosis. J Clin Microbiol. 1980 Aug;12(2):151–155. doi: 10.1128/jcm.12.2.151-155.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sharp J. C., Paterson G. M., Forbes G. I. Milk-borne salmonellosis in Scotland. J Infect. 1980 Dec;2(4):333–340. doi: 10.1016/s0163-4453(80)92744-9. [DOI] [PubMed] [Google Scholar]
  18. Smyser C. F., Snoeyenbos G. H. Enrichment serology compared with a direct-culture procedure for isolating salmonellae from rendered animal by-products. Avian Dis. 1971 Jul-Sep;15(3):581–587. [PubMed] [Google Scholar]
  19. Sorrells K. M., Speck M. L., Warren J. A. Pathogenicity of Salmonella gallinarum after metabolic injury by freezing. Appl Microbiol. 1970 Jan;19(1):39–43. doi: 10.1128/am.19.1.39-43.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sperber W. H., Deibel R. H. Accelerated procedure for Salmonella detection in dried foods and feeds involving only borth cultures and serological reactions. Appl Microbiol. 1969 Apr;17(4):533–539. doi: 10.1128/am.17.4.533-539.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Swaminathan B., Ayres J. C., Williams J. E. Control of nonspecific staining in the fluorescent antibody technique for the detection of salmonellae in foods. Appl Environ Microbiol. 1978 May;35(5):911–919. doi: 10.1128/aem.35.5.911-919.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Taylor D. N., Bied J. M., Munro J. S., Feldman R. A. Salmonella dublin infections in the United States, 1979-1980. J Infect Dis. 1982 Sep;146(3):322–327. doi: 10.1093/infdis/146.3.322. [DOI] [PubMed] [Google Scholar]
  23. Welkos S., Schreiber M., Baer H. Identification of Salmonella with the O-1 bacteriophage. Appl Microbiol. 1974 Oct;28(4):618–622. doi: 10.1128/am.28.4.618-622.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Werner S. B., Humphrey G. L., Kamei I. Association between raw milk and human Salmonella dublin infection. Br Med J. 1979 Jul 28;2(6184):238–241. doi: 10.1136/bmj.2.6184.238. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES