Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Jan 1;217(1):27–40. doi: 10.1042/bj2170027

Effects of exogenous amines on mammalian cells, with particular reference to membrane flow.

R T Dean, W Jessup, C R Roberts
PMCID: PMC1153178  PMID: 6365083

Abstract

We have reviewed the evidence that amines accumulate in intracellular vesicles of low pH, such as lysosomes and endosomes. There is consequent elevation of intravesicular pH, and inhibition of receptor-ligand dissociation often results from this pH change. We have argued that the capacity for fusion of such vesicles is also reduced by the high pH. We suggest that the variety of effects of amines on membrane flow and macromolecular transport we describe are at least partly due to such reduced fusion (Figs. 1 and 2). We propose that an internal low pH may facilitate heterologous vesicle-vesicle and vesicle-plasma membrane fusion. There is some evidence that clathrin can accelerate phospholipid vesicle fusion in vitro at low pH (Blumenthal et al., 1983) but no direct evidence on the role of intravesicular pH. This idea is consistent not only with the preceding discussion, but also with the fact that the intracellular membrane-bound compartments least involved in fusion events (e.g. mitochondria) are of neutral or alkaline internal pH. Membrane fusion is certainly required for the formation of vesicles at the periphery of the Golgi apparatus, and possibly earlier in the transport and processing of biosynthetic products in the Golgi (Bergeron et al., 1982). Thus the accumulation of amines in the Golgi may be responsible for several effects on the flow of macromolecules along their translocation pathways. The status of the plasma membrane in this view is complex. It might be argued that the pH dictating the fusion step in endocytosis is that of the extracellular fluid, in which case the inhibitory effects of amines on this process are not explained. However, the rapidity of acidification of the newly formed endocytic vesicles allows the possibility that plasma membrane invaginations might temporarily sequester areas which are of lower pH than that of the bulk extracellular fluid even before fusion, since the proton pumping enzyme(s) are probably present on the plasma membrane. Were this the case, then an acid pH could again be a factor determining membrane fusion at the plasma membrane. The inhibition of endocytosis by weak bases thus may again reflect elevation of pH in a sequestered compartment. From the data on the dependence of response on the concentration of amines, we anticipate that most responses involving membrane flow will be biphasic, with inhibitory effects at low amine concentration, giving way to stimulatory ones at higher concentrations. We suggest that the reported dichotomy between different amines in intracellular membrane fusion systems (D'Arcy Hart, 1982) may result from this concentration dependence.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
27

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams C. J., Maurey K. M., Storrie B. Exocytosis of pinocytic contents by Chinese hamster ovary cells. J Cell Biol. 1982 Jun;93(3):632–637. doi: 10.1083/jcb.93.3.632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ahlberg J., Marzella L., Glaumann H. Uptake and degradation of proteins by isolated rat liver lysosomes. Suggestion of a microautophagic pathway of proteolysis. Lab Invest. 1982 Dec;47(6):523–532. [PubMed] [Google Scholar]
  3. Amenta J. S., Brocher S. C. Lack of effect of NH4Cl on protein synthesis in cultured fibroblasts. Exp Cell Res. 1980 Dec;130(2):305–311. doi: 10.1016/0014-4827(80)90007-5. [DOI] [PubMed] [Google Scholar]
  4. Anderson R. G., Brown M. S., Goldstein J. L. Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell. 1977 Mar;10(3):351–364. doi: 10.1016/0092-8674(77)90022-8. [DOI] [PubMed] [Google Scholar]
  5. Arrang J. M., Garbarg M., Schwartz J. C. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature. 1983 Apr 28;302(5911):832–837. doi: 10.1038/302832a0. [DOI] [PubMed] [Google Scholar]
  6. Ashby J., Paton D., Lefevre P. A. Cyclic amines as less mutagenic replacements for dimethyl amino (--NMe2) substituents on aromatic organic compounds: implications for carcinogenicity and toxicity. Cancer Lett. 1983 Jan;17(3):263–271. doi: 10.1016/0304-3835(83)90163-5. [DOI] [PubMed] [Google Scholar]
  7. Aubert-Tulkens G., Van Hoof F., Tulkens P. Gentamicin-induced lysosomal phospholipidosis in cultured rat fibroblasts. Quantitative ultrastructural and biochemical study. Lab Invest. 1979 Apr;40(4):481–491. [PubMed] [Google Scholar]
  8. Basu S. K., Goldstein J. L., Anderson R. G., Brown M. S. Monensin interrupts the recycling of low density lipoprotein receptors in human fibroblasts. Cell. 1981 May;24(2):493–502. doi: 10.1016/0092-8674(81)90340-8. [DOI] [PubMed] [Google Scholar]
  9. Berg R. A., Schwartz M. L., Crystal R. G. Regulation of the production of secretory proteins: intracellular degradation of newly synthesized "defective" collagen. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4746–4750. doi: 10.1073/pnas.77.8.4746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Berg T., Tolleshaug H. The effects of ammonium ions and chloroquine on uptake and degradation of 125I-labeled asialo-fetuin in isolated rat hepatocytes. Biochem Pharmacol. 1980 Mar 15;29(6):917–925. doi: 10.1016/0006-2952(80)90222-1. [DOI] [PubMed] [Google Scholar]
  11. Bergeron J. J., Paiement J., Rachubinski R., Ng Ying Kin N. M., Sikstrom R. Membrane Fusion and the Mechanism of Terminal Glycosylation within the Golgi Apparatus of Rat Liver Hepatocytes. Biophys J. 1982 Jan;37(1):121–122. doi: 10.1016/S0006-3495(82)84631-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bersten A. M., Ahkong Q. F., Hallinan T., Nelson S. J., Lucy J. A. Inhibition of the formation of myotubes in vitro by inhibitors of transglutaminase. Biochim Biophys Acta. 1983 Jun 2;762(3):429–436. doi: 10.1016/0167-4889(83)90008-3. [DOI] [PubMed] [Google Scholar]
  13. Besterman J. M., Airhart J. A., Low R. B., Rannels D. E. Pinocytosis and intracellular degradation of exogenous protein: modulation by amino acids. J Cell Biol. 1983 Jun;96(6):1586–1591. doi: 10.1083/jcb.96.6.1586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Besterman J. M., Airhart J. A., Woodworth R. C., Low R. B. Exocytosis of pinocytosed fluid in cultured cells: kinetic evidence for rapid turnover and compartmentation. J Cell Biol. 1981 Dec;91(3 Pt 1):716–727. doi: 10.1083/jcb.91.3.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Blumenthal R., Henkart M., Steer C. J. Clathrin-induced pH-dependent fusion of phosphatidylcholine vesicles. J Biol Chem. 1983 Mar 10;258(5):3409–3415. [PubMed] [Google Scholar]
  16. Bridges K., Harford J., Ashwell G., Klausner R. D. Fate of receptor and ligand during endocytosis of asialoglycoproteins by isolated hepatocytes. Proc Natl Acad Sci U S A. 1982 Jan;79(2):350–354. doi: 10.1073/pnas.79.2.350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Brown M. S., Goldstein J. L., Krieger M., Ho Y. K., Anderson R. G. Reversible accumulation of cholesteryl esters in macrophages incubated with acetylated lipoproteins. J Cell Biol. 1979 Sep;82(3):597–613. doi: 10.1083/jcb.82.3.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Butler S. J., Landon M. Transglutaminase-catalysed incorporation of putrescine into denatured cytochrome. Preparation of a mono-substituted derivative reactive with cytochrome c oxidase. Biochim Biophys Acta. 1981 Sep 29;670(2):214–221. doi: 10.1016/0005-2795(81)90012-x. [DOI] [PubMed] [Google Scholar]
  19. Chesnut R. W., Colon S. M., Grey H. M. Requirements for the processing of antigens by antigen-presenting B cells. I. Functional comparison of B cell tumors and macrophages. J Immunol. 1982 Dec;129(6):2382–2388. [PubMed] [Google Scholar]
  20. Cockle S. M., Dean R. T. The regulation of proteolysis in normal fibroblasts as they approach confluence. Evidence for the participation of the lysosomal system. Biochem J. 1982 Dec 15;208(3):795–800. doi: 10.1042/bj2080795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Davies P. J., Davies D. R., Levitzki A., Maxfield F. R., Milhaud P., Willingham M. C., Pastan I. H. Transglutaminase is essential in receptor-mediated endocytosis of alpha 2-macroglobulin and polypeptide hormones. Nature. 1980 Jan 10;283(5743):162–167. doi: 10.1038/283162a0. [DOI] [PubMed] [Google Scholar]
  22. De Groot P. G., Ovde Elferink R. O., Hollemans M., Strijland A., Westerveld A., Meera Khan P., Tager J. M. Inactivation by chloroquine of alpha-galactosidase in cultured human skin fibroblasts. Exp Cell Res. 1981 Dec;136(2):327–333. doi: 10.1016/0014-4827(81)90011-2. [DOI] [PubMed] [Google Scholar]
  23. Dean R. T. Amines and secretory pathways. Nature. 1983 Sep 1;305(5929):73–74. doi: 10.1038/305073c0. [DOI] [PubMed] [Google Scholar]
  24. Dean R. T., Barrett A. J. Lysosomes. Essays Biochem. 1976;12:1–40. [PubMed] [Google Scholar]
  25. Dean R. T., Jessup W. Modulation of exocytosis of previously pinocytosed fluid by human fibroblasts. Biosci Rep. 1982 Aug;2(8):551–560. doi: 10.1007/BF01314215. [DOI] [PubMed] [Google Scholar]
  26. Dean R. T., Prydz H. Amines induce increased thromboplastin activity in human monocytes. Eur J Biochem. 1983 Apr 5;131(3):655–658. doi: 10.1111/j.1432-1033.1983.tb07313.x. [DOI] [PubMed] [Google Scholar]
  27. Dickson R. B., Schlegel R., Willingham M. C., Pastan I. H. Reversible and irreversible inhibitors of clustering of alpha 2M in clathrin-coated pits on the surface of fibroblasts. Exp Cell Res. 1982 Jul;140(1):215–225. doi: 10.1016/0014-4827(82)90171-9. [DOI] [PubMed] [Google Scholar]
  28. Fedorko M. E., Hirsch J. G., Cohn Z. A. Autophagic vacuoles produced in vitro. I. Studies on cultured macrophages exposed to chloroquine. J Cell Biol. 1968 Aug;38(2):377–391. doi: 10.1083/jcb.38.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Fidler I. J., Raz A., Fogler W. E., Hoyer L. C., Poste G. The role of plasma membrane receptors and the kinetics of macrophage activation by lymphokines encapsulated in liposomes. Cancer Res. 1981 Feb;41(2):495–504. [PubMed] [Google Scholar]
  30. Gabel C. A., Goldberg D. E., Kornfeld S. Identification and characterization of cells deficient in the mannose 6-phosphate receptor: evidence for an alternate pathway for lysosomal enzyme targeting. Proc Natl Acad Sci U S A. 1983 Feb;80(3):775–779. doi: 10.1073/pnas.80.3.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Gabel C. A., Goldberg D. E., Kornfeld S. Lysosomal enzyme oligosaccharide phosphorylation in mouse lymphoma cells: specificity and kinetics of binding to the mannose 6-phosphate receptor in vivo. J Cell Biol. 1982 Nov;95(2 Pt 1):536–542. doi: 10.1083/jcb.95.2.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Geisow M. J., Beaven G. H., Hart P. D., Young M. R. Site of action of a polyanion inhibitor of phagosome-lysosome fusion in cultured macrophages. Exp Cell Res. 1980 Mar;126(1):159–165. doi: 10.1016/0014-4827(80)90481-4. [DOI] [PubMed] [Google Scholar]
  33. Gillis C. N., Pitt B. R. The fate of circulating amines within the pulmonary circulation. Annu Rev Physiol. 1982;44:269–281. doi: 10.1146/annurev.ph.44.030182.001413. [DOI] [PubMed] [Google Scholar]
  34. Gonzalez-Noriega A., Grubb J. H., Talkad V., Sly W. S. Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling. J Cell Biol. 1980 Jun;85(3):839–852. doi: 10.1083/jcb.85.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Gordon A. H., Hart P. D., Young M. R. Ammonia inhibits phagosome-lysosome fusion in macrophages. Nature. 1980 Jul 3;286(5768):79–80. doi: 10.1038/286079a0. [DOI] [PubMed] [Google Scholar]
  36. Gordon P. B., Seglen P. O. 6-substituted purines: a novel class of inhibitors of endogenous protein degradation in isolated rat hepatocytes. Arch Biochem Biophys. 1982 Aug;217(1):282–294. doi: 10.1016/0003-9861(82)90504-5. [DOI] [PubMed] [Google Scholar]
  37. Gray R. H., Sokol M., Brabec R. K., Brabec M. J. Characterization of chloroquine-induced autophagic vacuoles isolated from rat liver. Exp Mol Pathol. 1981 Feb;34(1):72–86. doi: 10.1016/0014-4800(81)90037-x. [DOI] [PubMed] [Google Scholar]
  38. Grey H. M., Colon S. M., Chesnut R. W. Requirements for the processing of antigen by antigen-presenting B cells. II. Biochemical comparison of the fate of antigen in B cell tumors and macrophages. J Immunol. 1982 Dec;129(6):2389–2395. [PubMed] [Google Scholar]
  39. Gross J. D., Bradbury J., Kay R. R., Peacey M. J. Intracellular pH and the control of cell differentiation in Dictyostelium discoideum. Nature. 1983 May 19;303(5914):244–245. doi: 10.1038/303244a0. [DOI] [PubMed] [Google Scholar]
  40. Haigler H. T., Willingham M. C., Pastan I. Inhibitors of 125I-epidermal growth factor internalization. Biochem Biophys Res Commun. 1980 May 30;94(2):630–637. doi: 10.1016/0006-291x(80)91279-6. [DOI] [PubMed] [Google Scholar]
  41. Hart P. D., Young M. R. Manipulations of the phagosome-lysosome fusion response in cultured macrophages. Enhancement of fusion by chloroquine and other amines. Exp Cell Res. 1978 Jul;114(2):486–490. doi: 10.1016/0014-4827(78)90516-5. [DOI] [PubMed] [Google Scholar]
  42. Hasilik A., Neufeld E. F. Biosynthesis of lysosomal enzymes in fibroblasts. Phosphorylation of mannose residues. J Biol Chem. 1980 May 25;255(10):4946–4950. [PubMed] [Google Scholar]
  43. Hasilik A., Neufeld E. F. Biosynthesis of lysosomal enzymes in fibroblasts. Synthesis as precursors of higher molecular weight. J Biol Chem. 1980 May 25;255(10):4937–4945. [PubMed] [Google Scholar]
  44. Helenius A., Marsh M. Endocytosis of enveloped animal viruses. Ciba Found Symp. 1982;(92):59–76. doi: 10.1002/9780470720745.ch4. [DOI] [PubMed] [Google Scholar]
  45. Hershko A., Ciechanover A. Mechanisms of intracellular protein breakdown. Annu Rev Biochem. 1982;51:335–364. doi: 10.1146/annurev.bi.51.070182.002003. [DOI] [PubMed] [Google Scholar]
  46. Hollemans M., Elferink R. O., De Groot P. G., Strijland A., Tager J. M. Accumulation of weak bases in relation to intralysosomal pH in cultured human skin fibroblasts. Biochim Biophys Acta. 1981 Apr 22;643(1):140–151. doi: 10.1016/0005-2736(81)90226-1. [DOI] [PubMed] [Google Scholar]
  47. Hostetler K. Y., Richman D. D. Studies on the mechanism of phospholipid storage induced by amantadine and chloroquine in Madin Darby canine kidney cells. Biochem Pharmacol. 1982 Dec 1;31(23):3795–3799. doi: 10.1016/0006-2952(82)90295-7. [DOI] [PubMed] [Google Scholar]
  48. Houslay M. D., Elliott K. R. Is the receptor-mediated endocytosis of cholera toxin A pre-requisite for its activation of adenylate cyclase in intact rat hepatocytes? FEBS Lett. 1981 Jun 15;128(2):289–292. doi: 10.1016/0014-5793(81)80101-9. [DOI] [PubMed] [Google Scholar]
  49. Huebers H. A., Csiba E., Huebers E., Finch C. A. Competitive advantage of diferric transferrin in delivering iron to reticulocytes. Proc Natl Acad Sci U S A. 1983 Jan;80(1):300–304. doi: 10.1073/pnas.80.1.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Jessup W., Dean R. T. Secretion by mononuclear phagocytes of lysosomal hydrolases bearing ligands for the mannose-6-phosphate receptor system of fibroblasts: evidence for a second mechanism of spontaneous secretion? Biochem Biophys Res Commun. 1982 Apr 14;105(3):922–927. doi: 10.1016/0006-291x(82)91058-0. [DOI] [PubMed] [Google Scholar]
  51. Jessup W., Dean R. T. Spontaneous lysosomal enzyme secretion by a murine macrophage-like cell line. Biochem J. 1980 Sep 15;190(3):847–850. doi: 10.1042/bj1900847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Jessup W., Leoni P., Bodmer J. L., Dean R. T. The effect of weak bases on lysosomal enzyme secretion by mononuclear phagocytes. Biochem Pharmacol. 1982 Aug 15;31(16):2657–2662. doi: 10.1016/0006-2952(82)90714-6. [DOI] [PubMed] [Google Scholar]
  53. Jessup W., Shirazi M. F., Dean R. T. Inhibition of some spontaneous secretory processes in macrophages and fibroblasts by ammonium chloride. Biochem Pharmacol. 1983 Sep 15;32(18):2703–2710. doi: 10.1016/0006-2952(83)90079-5. [DOI] [PubMed] [Google Scholar]
  54. Julian C., Speck N. A., Pierce S. K. Primary amines inhibit the triggering of B lymphocytes to antibody synthesis. J Immunol. 1983 Jan;130(1):91–96. [PubMed] [Google Scholar]
  55. Kaplan A., Achord D. T., Sly W. S. Phosphohexosyl components of a lysosomal enzyme are recognized by pinocytosis receptors on human fibroblasts. Proc Natl Acad Sci U S A. 1977 May;74(5):2026–2030. doi: 10.1073/pnas.74.5.2026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Kaplan A., Fischer D., Achord D., Sly W. Phosphohexosyl recognition is a general characteristic of pinocytosis of lysosomal glycosidases by human fibroblasts. J Clin Invest. 1977 Nov;60(5):1088–1093. doi: 10.1172/JCI108860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Kaplan J., Keogh E. A. Analysis of the effect of amines on inhibition of receptor-mediated and fluid-phase pinocytosis in rabbit alveolar macrophages. Cell. 1981 Jun;24(3):925–932. doi: 10.1016/0092-8674(81)90118-5. [DOI] [PubMed] [Google Scholar]
  58. Keen J. H., Willingham M. C., Pastan I. H. Clathrin-coated vesicles: isolation, dissociation and factor-dependent reassociation of clathrin baskets. Cell. 1979 Feb;16(2):303–312. doi: 10.1016/0092-8674(79)90007-2. [DOI] [PubMed] [Google Scholar]
  59. King A. C., Hernaez-Davis L., Cuatrecasas P. Lysomotropic amines cause intracellular accumulation of receptors for epidermal growth factor. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3283–3287. doi: 10.1073/pnas.77.6.3283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. King A. C., Hernaez-Davis L., Cuatrecasas P. Lysosomotropic amines inhibit mitogenesis induced by growth factors. Proc Natl Acad Sci U S A. 1981 Feb;78(2):717–721. doi: 10.1073/pnas.78.2.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Kinsel J. F., Melnik E. I., Lindenbaum S., Sternson L. A., Ovchinnikov YuA The effect of amine structure on complexation with lasalocid in model membrane systems. I. Identification of charged complexes in lipid bilayer membranes. Biochim Biophys Acta. 1982 Jan 22;684(2):233–240. doi: 10.1016/0005-2736(82)90011-6. [DOI] [PubMed] [Google Scholar]
  62. Kleiner D. The transport of NH3 and NH4+ across biological membranes. Biochim Biophys Acta. 1981 Nov 9;639(1):41–52. doi: 10.1016/0304-4173(81)90004-5. [DOI] [PubMed] [Google Scholar]
  63. Kousoulas K. G., Person S., Holland T. C. Herpes simplex virus type 1 cell fusion occurs in the presence of ammonium chloride-inhibited glycoproteins. Virology. 1982 Dec;123(2):257–263. doi: 10.1016/0042-6822(82)90259-8. [DOI] [PubMed] [Google Scholar]
  64. Kovács A. L., Molnár K., Seglen P. O. Inhibition of autophagic sequestration and endogenous protein degradation in isolated rat hepatocytes by methylated adenosine derivatives. FEBS Lett. 1981 Nov 16;134(2):194–196. doi: 10.1016/0014-5793(81)80600-x. [DOI] [PubMed] [Google Scholar]
  65. Laurent G., Carlier M. B., Rollman B., Van Hoof F., Tulkens P. Mechanism of aminoglycoside-induced lysosomal phospholipidosis: in vitro and in vivo studies with gentamicin and amikacin. Biochem Pharmacol. 1982 Dec 1;31(23):3861–3870. doi: 10.1016/0006-2952(82)90303-3. [DOI] [PubMed] [Google Scholar]
  66. Lee K. S., Tsien R. W. Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature. 1983 Apr 28;302(5911):790–794. doi: 10.1038/302790a0. [DOI] [PubMed] [Google Scholar]
  67. Lemaire G., Drapier J. C., Petit J. F. Importance, localization and functional properties of the cell-associated form of plasminogen activator in mouse peritoneal macrophages. Biochim Biophys Acta. 1983 Feb 22;755(3):332–343. doi: 10.1016/0304-4165(83)90235-0. [DOI] [PubMed] [Google Scholar]
  68. Leu R. W., Herriott M. J., Moore P. E., Orr G. R., Birckbichler P. J. Enhanced transglutaminase activity associated with macrophage activation. Possible role in Fc-mediated phagocytosis. Exp Cell Res. 1982 Sep;141(1):191–199. doi: 10.1016/0014-4827(82)90081-7. [DOI] [PubMed] [Google Scholar]
  69. Levitzki A., Willingham M., Pastan I. Evidence for participation of transglutaminase in receptor-mediated endocytosis. Proc Natl Acad Sci U S A. 1980 May;77(5):2706–2710. doi: 10.1073/pnas.77.5.2706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Libby P., Bursztajn S., Goldberg A. L. Degradation of the acetylcholine receptor in cultured muscle cells: selective inhibitors and the fate of undegraded receptors. Cell. 1980 Feb;19(2):481–491. doi: 10.1016/0092-8674(80)90523-1. [DOI] [PubMed] [Google Scholar]
  71. Lie S. O., Schofield B. Inactivation of lysosomal function in normal cultured human fibroblasts by chloroquine. Biochem Pharmacol. 1973 Dec 1;22(23):3109–3114. doi: 10.1016/0006-2952(73)90197-4. [DOI] [PubMed] [Google Scholar]
  72. Livesey G., Williams K. E., Knowles S. E., Ballard F. J. Effects of weak bases on the degradation of endogenous and exogenous proteins by rat yolk sacs. Biochem J. 1980 Jun 15;188(3):895–903. doi: 10.1042/bj1880895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Lorand L., Weissmann L. B., Epel D. L., Bruner-Lorand J. Role of the intrinsic transglutaminase in the Ca2+-mediated crosslinking of erythrocyte proteins. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4479–4481. doi: 10.1073/pnas.73.12.4479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Lüllmann H., Vollmer B. An interaction of aminoglycoside antibiotics with Ca binding to lipid monolayers and to biomembranes. Biochem Pharmacol. 1982 Dec 1;31(23):3769–3773. doi: 10.1016/0006-2952(82)90291-x. [DOI] [PubMed] [Google Scholar]
  75. MANDEL E. H. A new local anesthetic with anticoagulant properties, chloroquine (aralen) dihydrochloride. Arch Dermatol. 1960 Feb;81:260–263. doi: 10.1001/archderm.1960.03730020096015. [DOI] [PubMed] [Google Scholar]
  76. Majumdar S., Baker R. F., Kalra V. K. Fusion of human erythrocytes induced by uranyl acetate and rare earth metals. Biochim Biophys Acta. 1980 May 23;598(2):411–416. doi: 10.1016/0005-2736(80)90019-x. [DOI] [PubMed] [Google Scholar]
  77. Maxfield F. R., Davies P. J., Klempner L., Willingham M. C., Pastan I. Epidermal growth factor stimulation of DNA synthesis is potentiated by compounds that inhibit its clustering in coated pits. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5731–5735. doi: 10.1073/pnas.76.11.5731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Maxfield F. R. Weak bases and ionophores rapidly and reversibly raise the pH of endocytic vesicles in cultured mouse fibroblasts. J Cell Biol. 1982 Nov;95(2 Pt 1):676–681. doi: 10.1083/jcb.95.2.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Maxfield F. R., Willingham M. C., Davies P. J., Pastan I. Amines inhibit the clustering of alpha2-macroglobulin and EGF on the fibroblast cell surface. Nature. 1979 Feb 22;277(5698):661–663. doi: 10.1038/277661a0. [DOI] [PubMed] [Google Scholar]
  80. Maynard J. R., Fintel D. J., Pitlick F. A., Nemerson Y. Tissue factor in cultured cells: pharmacologic effects. Lab Invest. 1976 Dec;35(6):550–557. [PubMed] [Google Scholar]
  81. Merion M., Sly W. S. The role of intermediate vesicles in the adsorptive endocytosis and transport of ligand to lysosomes by human fibroblasts. J Cell Biol. 1983 Mar;96(3):644–650. doi: 10.1083/jcb.96.3.644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Moore H. P., Gumbiner B., Kelly R. B. Chloroquine diverts ACTH from a regulated to a constitutive secretory pathway in AtT-20 cells. 1983 Mar 31-Apr 6Nature. 302(5907):434–436. doi: 10.1038/302434a0. [DOI] [PubMed] [Google Scholar]
  83. Muchmore A. V., Decker J. M., Blaese R. M. Evidence that specific oligosaccharides block early events necessary for the expression of antigen-specific proliferation by human lymphocytes. J Immunol. 1980 Sep;125(3):1306–1311. [PubMed] [Google Scholar]
  84. Ohkuma S., Moriyama Y., Takano T. Identification and characterization of a proton pump on lysosomes by fluorescein-isothiocyanate-dextran fluorescence. Proc Natl Acad Sci U S A. 1982 May;79(9):2758–2762. doi: 10.1073/pnas.79.9.2758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Ohkuma S., Poole B. Cytoplasmic vacuolation of mouse peritoneal macrophages and the uptake into lysosomes of weakly basic substances. J Cell Biol. 1981 Sep;90(3):656–664. doi: 10.1083/jcb.90.3.656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Ohkuma S., Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3327–3331. doi: 10.1073/pnas.75.7.3327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Pegg A. E., McCann P. P. Polyamine metabolism and function. Am J Physiol. 1982 Nov;243(5):C212–C221. doi: 10.1152/ajpcell.1982.243.5.C212. [DOI] [PubMed] [Google Scholar]
  88. Poole B., Ohkuma S. Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J Cell Biol. 1981 Sep;90(3):665–669. doi: 10.1083/jcb.90.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Posner B. I., Patel B. A., Khan M. N., Bergeron J. J. Effect of chloroquine on the internalization of 125I-insulin into subcellular fractions of rat liver. Evidence for an effect of chloroquine on Golgi elements. J Biol Chem. 1982 May 25;257(10):5789–5799. [PubMed] [Google Scholar]
  90. Poste G., Allison A. C. Membrane fusion. Biochim Biophys Acta. 1973 Dec 28;300(4):421–465. doi: 10.1016/0304-4157(73)90015-4. [DOI] [PubMed] [Google Scholar]
  91. Radomski J. L. The primary aromatic amines: their biological properties and structure-activity relationships. Annu Rev Pharmacol Toxicol. 1979;19:129–157. doi: 10.1146/annurev.pa.19.040179.001021. [DOI] [PubMed] [Google Scholar]
  92. Reijngoud D. J., Tager J. M. The permeability properties of the lysosomal membrane. Biochim Biophys Acta. 1977 Nov 14;472(3-4):419–449. doi: 10.1016/0304-4157(77)90005-3. [DOI] [PubMed] [Google Scholar]
  93. Riches D. W., Morris C. J., Stanworth D. R. Induction of selective acid hydrolase release from mouse macrophages during exposure to chloroquine and quinine. Biochem Pharmacol. 1981 Mar 15;30(6):629–634. doi: 10.1016/0006-2952(81)90136-2. [DOI] [PubMed] [Google Scholar]
  94. Riches D. W., Stanworth D. R. Evidence for a mechanism for the initiation of acid hydrolase secretion by macrophages that is functionally independent of alternative pathway complement activation. Biochem J. 1982 Mar 15;202(3):639–645. doi: 10.1042/bj2020639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Riches D. W., Stanworth D. R. Primary amines induce selective release of lysosomal enzymes from mouse macrophages. Biochem J. 1980 Jun 15;188(3):933–936. doi: 10.1042/bj1880933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Sabatini D. D., Kreibich G., Morimoto T., Adesnik M. Mechanisms for the incorporation of proteins in membranes and organelles. J Cell Biol. 1982 Jan;92(1):1–22. doi: 10.1083/jcb.92.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Sahagian G. G., Gottesman M. M. The predominant secreted protein of transformed murine fibroblasts carries the lysosomal mannose 6-phosphate recognition marker. J Biol Chem. 1982 Sep 25;257(18):11145–11150. [PubMed] [Google Scholar]
  98. Sando G. N., Titus-Dillon P., Hall C. W., Neufeld E. F. Inhibition of receptor-mediated uptake of a lysosomal enzyme into fibroblasts by chloroquine, procaine and ammonia. Exp Cell Res. 1979 Mar 15;119(2):359–364. doi: 10.1016/0014-4827(79)90364-1. [DOI] [PubMed] [Google Scholar]
  99. Sandvig K., Olsnes S. Entry of the toxic proteins abrin, modeccin, ricin, and diphtheria toxin into cells. II. Effect of pH, metabolic inhibitors, and ionophores and evidence for toxin penetration from endocytotic vesicles. J Biol Chem. 1982 Jul 10;257(13):7504–7513. [PubMed] [Google Scholar]
  100. Savary C. A., Phillips J. H., Lotzová E. Inhibition of murine natural killer cell-mediated cytotoxicity by pretreatment with ammonium chloride. J Immunol Methods. 1979;25(2):189–192. doi: 10.1016/0022-1759(79)90055-3. [DOI] [PubMed] [Google Scholar]
  101. Schindler M., Koppel D. E., Sheetz M. P. Modulation of membrane protein lateral mobility by polyphosphates and polyamines. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1457–1461. doi: 10.1073/pnas.77.3.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Schneider Y. J., Trouet A. Effect of chloroquine and methylamine on endocytosis of fluorescein-labelled controlled IgG and of anti-(plasma membrane) IgG by cultured fibroblasts. Eur J Biochem. 1981 Aug;118(1):33–38. doi: 10.1111/j.1432-1033.1981.tb05482.x. [DOI] [PubMed] [Google Scholar]
  103. Schwartz S. L., Bond J. C. Stimulation of release of pinolysosomal contents of macrophages by nicotine. J Pharmacol Exp Ther. 1972 Nov;183(2):378–384. [PubMed] [Google Scholar]
  104. Schwartz S. L., Evans D. E., Lundin J. E., Bond J. C. Inhibition of pinocytosis by nicotine. J Pharmacol Exp Ther. 1972 Nov;183(2):370–377. [PubMed] [Google Scholar]
  105. Scott R. E., Maercklein P. B. Plasma membrane vesiculation: correlation between macrophage spreading and the shedding of cell surface vesicles. Lab Invest. 1977 Oct;37(4):430–436. [PubMed] [Google Scholar]
  106. Seeman P. The membrane actions of anesthetics and tranquilizers. Pharmacol Rev. 1972 Dec;24(4):583–655. [PubMed] [Google Scholar]
  107. Seglen P. O., Gordon P. B. Inhibition of cell spreading by lysosomotropic amines. FEBS Lett. 1979 Sep 15;105(2):345–348. doi: 10.1016/0014-5793(79)80645-6. [DOI] [PubMed] [Google Scholar]
  108. Seglen P. O., Grinde B., Solheim A. E. Inhibition of the lysosomal pathway of protein degradation in isolated rat hepatocytes by ammonia, methylamine, chloroquine and leupeptin. Eur J Biochem. 1979 Apr 2;95(2):215–225. doi: 10.1111/j.1432-1033.1979.tb12956.x. [DOI] [PubMed] [Google Scholar]
  109. Seglen P. O., Reith A. Ammonia inhibits protein secretion in isolated rat hepatocytes. Biochim Biophys Acta. 1977 Jan 24;496(1):29–35. doi: 10.1016/0304-4165(77)90112-x. [DOI] [PubMed] [Google Scholar]
  110. Solheim A. E., Seglen P. O. Cellular and lysosomal uptake of methylamine in isolated rat hepatocytes. Biochem J. 1983 Mar 15;210(3):929–936. doi: 10.1042/bj2100929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Stauber W. T., Trout J. J., Schottelius B. A. Exocytosis of intact lysosomes from skeletal muscle after chloroquine treatment. Exp Mol Pathol. 1981 Feb;34(1):87–93. doi: 10.1016/0014-4800(81)90038-1. [DOI] [PubMed] [Google Scholar]
  112. Stefani E., Chiarandini D. J. Ionic channels in skeletal muscle. Annu Rev Physiol. 1982;44:357–372. doi: 10.1146/annurev.ph.44.030182.002041. [DOI] [PubMed] [Google Scholar]
  113. Stutman O., Dien P., Wisun R. E., Lattime E. C. Natural cytotoxic cells against solid tumors in mice: blocking of cytotoxicity by D-mannose. Proc Natl Acad Sci U S A. 1980 May;77(5):2895–2898. doi: 10.1073/pnas.77.5.2895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Sung S. S., Nelson R. S., Silverstein S. C. Yeast mannans inhibit binding and phagocytosis of zymosan by mouse peritoneal macrophages. J Cell Biol. 1983 Jan;96(1):160–166. doi: 10.1083/jcb.96.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Thelmo W. L., Levine S. Renal lesions induced induced by tilorone and an analog. Ultrastructure and acid phosphatase study. Am J Pathol. 1978 May;91(2):355–360. [PMC free article] [PubMed] [Google Scholar]
  116. Thomas E. L., Jefferson M. M., Grisham M. B. Myeloperoxidase-catalyzed incorporation of amines into proteins: role of hypochlorous acid and dichloramines. Biochemistry. 1982 Nov 23;21(24):6299–6308. doi: 10.1021/bi00267a040. [DOI] [PubMed] [Google Scholar]
  117. Thyberg J., Nilsson J. Effects of nicotine on endocytosis and intracellular degradation of horseradish peroxidase in cultivated mouse peritoneal macrophages. Acta Pathol Microbiol Immunol Scand A. 1982 Sep;90(5):305–310. doi: 10.1111/j.1699-0463.1982.tb00098_90a.x. [DOI] [PubMed] [Google Scholar]
  118. Tietze C., Schlesinger P., Stahl P. Chloroquine and ammonium ion inhibit receptor-mediated endocytosis of mannose-glycoconjugates by macrophages: apparent inhibition of receptor recycling. Biochem Biophys Res Commun. 1980 Mar 13;93(1):1–8. doi: 10.1016/s0006-291x(80)80237-3. [DOI] [PubMed] [Google Scholar]
  119. Tietze C., Schlesinger P., Stahl P. Mannose-specific endocytosis receptor of alveolar macrophages: demonstration of two functionally distinct intracellular pools of receptor and their roles in receptor recycling. J Cell Biol. 1982 Feb;92(2):417–424. doi: 10.1083/jcb.92.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Tolleshaug H., Berg T. Chloroquine reduces the number of asialo-glycoprotein receptors in the hepatocyte plasma membrane. Biochem Pharmacol. 1979 Oct 1;28(19):2919–2922. doi: 10.1016/0006-2952(79)90586-0. [DOI] [PubMed] [Google Scholar]
  121. Tolleshaug H., Berg T., Holte K. Effects of local anesthetics and related compounds on the endocytosis and catabolism of asialo-glycoproteins in isolated hepatocytes. Biochim Biophys Acta. 1982 Jan 12;714(1):114–121. doi: 10.1016/0304-4165(82)90132-5. [DOI] [PubMed] [Google Scholar]
  122. Tycko B., Maxfield F. R. Rapid acidification of endocytic vesicles containing alpha 2-macroglobulin. Cell. 1982 Mar;28(3):643–651. doi: 10.1016/0092-8674(82)90219-7. [DOI] [PubMed] [Google Scholar]
  123. Ullrich K., Mersmann G., Weber E., Von Figura K. Evidence for lysosomal enzyme recognition by human fibroblasts via a phosphorylated carbohydrate moiety. Biochem J. 1978 Mar 15;170(3):643–650. doi: 10.1042/bj1700643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Van Leuven F., Cassiman J. J., Van Den Berghe H. Primary amines inhibit recycling of alpha 2M receptors in fibroblasts. Cell. 1980 May;20(1):37–43. doi: 10.1016/0092-8674(80)90232-9. [DOI] [PubMed] [Google Scholar]
  125. Vladutiu G. D. The effect of chloroquine on the distribution of newly synthesized and old beta-hexosaminidase in fibroblasts. Biochem J. 1982 Dec 15;208(3):559–566. doi: 10.1042/bj2080559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Waechter C. J., Schmidt J. W., Catterall W. A. Glycosylation is required for maintenance of functional sodium channels in neuroblastoma cells. J Biol Chem. 1983 Apr 25;258(8):5117–5123. [PubMed] [Google Scholar]
  127. Wibo M., Poole B. Protein degradation in cultured cells. II. The uptake of chloroquine by rat fibroblasts and the inhibition of cellular protein degradation and cathepsin B1. J Cell Biol. 1974 Nov;63(2 Pt 1):430–440. doi: 10.1083/jcb.63.2.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Yarden Y., Gabbay M., Schlessinger J. Primary amines do not prevent the endocytosis of epidermal growth factor into 3T3 fibroblasts. Biochim Biophys Acta. 1981 May 5;674(2):188–203. doi: 10.1016/0304-4165(81)90377-9. [DOI] [PubMed] [Google Scholar]
  129. Young M. R., Hart P. D., Geisow M. J. Action of weak bases on phagosomes of cultured macrophages. Suppression by ammonium ions of an early increase in phagosomal pH. Exp Cell Res. 1981 Oct;135(2):442–445. doi: 10.1016/0014-4827(81)90187-7. [DOI] [PubMed] [Google Scholar]
  130. de Duve C., de Barsy T., Poole B., Trouet A., Tulkens P., Van Hoof F. Commentary. Lysosomotropic agents. Biochem Pharmacol. 1974 Sep 15;23(18):2495–2531. doi: 10.1016/0006-2952(74)90174-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES