Abstract
An in vitro approach to the study of single nephron function in uremia has been employed in evaluating the control of fluid reabsorption by the renal superficial proximal straight tubule (PST). Isolated segments of PSTs from the remnant kidneys of uremic rabbits (stage III) were perfused in vitro and their rate of fluid reabsorption compared with normal PSTs and with PSTs derived from the remnant kidneys of nonuremic rabbits (stage II). All segments were exposed to a peritubular bathing medium of both normal and uremic rabbit serum thereby permitting a differentiation to be made between adaptations in function which are intrinsic to the tubular epithelium and those which are dependent upon a uremic milieu.
Compared with normal and stage II PSTs, there was significant hypertrophy of the stage III tubules as evidenced by an increase in length and internal diameter, and a twofold increase in the dry weight per unit length. Fluid reabsorption per unit length of tubule was 70% greater in stage III than in normal and stage II PSTs, and was closely correlated with the increase in dry weight. Substitutions between normal and uremic rabbit serum in the peritubular bathing medium did not affect fluid reabsorption significantly in any of the three groups of PSTs. Perfusion of the tubules with an ultrafiltrate of normal vs. uremic serum likewise failed to influence the rate of net fluid reabsorption.
It has previously been observed that net fluid secretion may occur in nonperfused or stop-flow perfused normal rabbit PSTs exposed to human uremic serum. Additional studies were thus performed on normal and stage III PSTs to evaluate whether net secretion occurs in the presence of rabbit uremic serum. No evidence for net secretion was found.
These studies demonstrate that fluid reabsorption is greatly increased in the superficial PST of the uremic remnant kidney and that this functional adaptation is closely correlated with compensatory hypertrophy of the segment. Humoral factors in the peritubular environment do not appear to be important mediators of the enhanced fluid reabsorption.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allison M. E., Lipham E. M., Lassiter W. E., Gottschalk C. W. The acutely reduced kidney. Kidney Int. 1973 Jun;3(6):354–363. doi: 10.1038/ki.1973.57. [DOI] [PubMed] [Google Scholar]
- Allison M. E., Wilson C. B., Gottschalk C. W. Pathophysiology of experimental glomerulonephritis in rats. J Clin Invest. 1974 May;53(5):1402–1423. doi: 10.1172/JCI107689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bank N., Aynedjian H. S. Individual nephron function in experimental bilateral pyelonephritis. I. Glomerular filtration rate and proximal tubular sodium, potassium, and water reabsorption. J Lab Clin Med. 1966 Nov;68(5):713–727. [PubMed] [Google Scholar]
- Bricker N. S., Schmidt R. W., Favre H., Fine L., Bourgoignie J. J. On the biology of sodium excretion: The search for a natriuretic hormone. Yale J Biol Med. 1975 Sep;48(4):293–303. [PMC free article] [PubMed] [Google Scholar]
- Burg M. B., Orloff J. Control of fluid absorption in the renal proximal tubule. J Clin Invest. 1968 Sep;47(9):2016–2024. doi: 10.1172/JCI105888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CLAPP J. R., WATSON J. F., BERLINER R. W. OSMOLALITY, BICARBONATE CONCENTRATION, AND WATER REABSORPTION IN PROXIMAL TUBULE OF THE DOG NEPHRON. Am J Physiol. 1963 Aug;205:273–280. doi: 10.1152/ajplegacy.1963.205.2.273. [DOI] [PubMed] [Google Scholar]
- Cardinal J., Lutz M. D., Burg M. B., Orloff J. Lack of relationship of potential difference to fluid absorption in the proximal renal tubule. Kidney Int. 1975 Feb;7(2):94–102. doi: 10.1038/ki.1975.14. [DOI] [PubMed] [Google Scholar]
- Carriere S., Wong N. L., Dirks J. H. Redistribution of renal blood flow in acute and chronic reduction of renal mass. Kidney Int. 1973 Jun;3(6):364–371. doi: 10.1038/ki.1973.58. [DOI] [PubMed] [Google Scholar]
- Chonko A. M., Osgood R. W., Nickel A. E., Ferris T. F., Stein J. H. The measurement of nephron filtration rate and absolute reabsorption in the proximal tubule of the rabbit kidney. J Clin Invest. 1975 Jul;56(1):232–235. doi: 10.1172/JCI108073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diezi J., Michoud P., Grandchamp A., Giebisch G. Effects of nephrectomy on renal salt and water transport in the remaining kidney. Kidney Int. 1976 Dec;10(6):450–462. doi: 10.1038/ki.1976.132. [DOI] [PubMed] [Google Scholar]
- Fine L. G., Bourgoignie J. J., Hwang K. H., Bricker N. S. On the influence of the natriuretic factor from patients with chronic uremia on the bioelectric properties and sodium transport of the isolated mammalian collecting tubule. J Clin Invest. 1976 Sep;58(3):590–597. doi: 10.1172/JCI108505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fine L. G., Bourgoignie J. J., Weber H., Bricker N. S. Enhanced end-organ responsiveness of the uremic kidney to the natriuretic factor. Kidney Int. 1976 Nov;10(5):364–372. doi: 10.1038/ki.1976.122. [DOI] [PubMed] [Google Scholar]
- Fine L. G., Trizna W. Influence of prostaglandins on sodium transport of isolated medullary nephron segments. Am J Physiol. 1977 Apr;232(4):F383–F390. doi: 10.1152/ajprenal.1977.232.4.F383. [DOI] [PubMed] [Google Scholar]
- GOTTSCHALK C. W., LASSITER W. E., MYLLE M. Localization of urine acidification in the mammalian kidney. Am J Physiol. 1960 Mar;198:581–585. doi: 10.1152/ajplegacy.1960.198.3.581. [DOI] [PubMed] [Google Scholar]
- Grantham J. J. Fluid secretion in the nephron: Relation to renal failure. Physiol Rev. 1976 Jan;56(1):248–258. doi: 10.1152/physrev.1976.56.1.248. [DOI] [PubMed] [Google Scholar]
- Grantham J. J., Irwin R. L., Qualizza P. B., Tucker D. R., Whittier F. C. Fluid secretion in isolated proximal straight renal tubules. Effect of human uremic serum. J Clin Invest. 1973 Oct;52(10):2441–2450. doi: 10.1172/JCI107435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grantham J. J., Qualizza P. B., Irwin R. L. Net fluid secretion in proximal straight renal tubules in vitro: role of PAH. Am J Physiol. 1974 Jan;226(1):191–197. doi: 10.1152/ajplegacy.1974.226.1.191. [DOI] [PubMed] [Google Scholar]
- Hayslett J. P., Kashgarian M., Epstein F. H. Functional correlates of compensatory renal hypertrophy. J Clin Invest. 1968 Apr;47(4):774–799. doi: 10.1172/JCI105772. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaufman J. M., DiMeola H. J., Siegel N. J., Lytton B., Kashgarian M., Hayslett J. P. Compensatory adaptation of structure and function following progressive renal ablation. Kidney Int. 1974 Jul;6(1):10–17. doi: 10.1038/ki.1974.72. [DOI] [PubMed] [Google Scholar]
- Lubowitz H., Mazumdar D. C., Kawamura J., Crosson J. T., Weisser F., Rolf D., Bricker N. S. Experimental glomerulonephritis in the rat: structural and functional observations. Kidney Int. 1974 May;5(5):356–364. doi: 10.1038/ki.1974.51. [DOI] [PubMed] [Google Scholar]
- Lubowitz H., Purkerson M. L., Bricker N. S. Investigation of single nephrons in the chronically diseased (Pyelonephritic) kidney of the rat using micropuncture techniques. Nephron. 1966;3(2):73–83. doi: 10.1159/000179449. [DOI] [PubMed] [Google Scholar]
- Orringer E. P., Weiss F. R., Preuss H. G. Azotaemic inhibition of organic anion transport in the kidney of the rat: mechanisms and characteristics. Clin Sci. 1971 Feb;40(2):159–169. doi: 10.1042/cs0400159. [DOI] [PubMed] [Google Scholar]
- Preuss H. G., Massry S. G., Maher J. F., Gilliece M., Schreiner G. E. Effects of uremic sera on renal tubular P-aminohippurate transport. Nephron. 1966;3(5):265–273. doi: 10.1159/000179541. [DOI] [PubMed] [Google Scholar]
- RIESELBACH R. E., TODD L., ROSENTHAL M., BRICKER N. S. THE FUNCTIONAL ADAPTATION OF THE DISEASED KIDNEY. II. MAXIMUM RATE OF TRANSPORT OF PAH AND THE INFLUENCE OF ACETATE. J Lab Clin Med. 1964 Nov;64:724–730. [PubMed] [Google Scholar]
- Rocha A., Marcondes M., Malnic G. Micropuncture study in rats with experimental glomerulonephritis. Kidney Int. 1973 Jan;3(1):14–23. doi: 10.1038/ki.1973.3. [DOI] [PubMed] [Google Scholar]
- Sawabu N., Takazakura E., Handa A., Shinoda A., Takada A., Takeuchi J. Intrarenal vascular changes in experimental glomerulonephritis. Kidney Int. 1972 Feb;1(2):89–99. doi: 10.1038/ki.1972.12. [DOI] [PubMed] [Google Scholar]
- Schafer J. A., Andreoli T. E. Anion transport processes in the mammalian superficial proximal straight tubule. J Clin Invest. 1976 Aug;58(2):500–513. doi: 10.1172/JCI108494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schafer J. A., Troutman S. L., Andreoli T. E. Volume reabsorption, transepithelial potential differences, and ionic permeability properties in mammalian superficial proximal straight tubules. J Gen Physiol. 1974 Nov;64(5):582–607. doi: 10.1085/jgp.64.5.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultze R. G., Weisser F., Bricker N. S. The influence of uremia on fractional sodium reabsorption by the proximal tubule of rats. Kidney Int. 1972 Aug;2(2):59–65. doi: 10.1038/ki.1972.72. [DOI] [PubMed] [Google Scholar]
- Smith H. W., Finkelstein N., Aliminosa L., Crawford B., Graber M. THE RENAL CLEARANCES OF SUBSTITUTED HIPPURIC ACID DERIVATIVES AND OTHER AROMATIC ACIDS IN DOG AND MAN. J Clin Invest. 1945 May;24(3):388–404. doi: 10.1172/JCI101618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tune B. M., Burg M. B., Patlak C. S. Characteristics of p-aminohippurate transport in proximal renal tubules. Am J Physiol. 1969 Oct;217(4):1057–1063. doi: 10.1152/ajplegacy.1969.217.4.1057. [DOI] [PubMed] [Google Scholar]
- Weber H., Lin K. Y., Bricker N. S. Effect of sodium intake on single nephron glomerular filtration rate and sodium reabsorption in experimental uremia. Kidney Int. 1975 Jul;8(1):14–20. doi: 10.1038/ki.1975.71. [DOI] [PubMed] [Google Scholar]
- Weinman E. J., Renquist K., Stroup R., Kashgarian M., Hayslett J. P. Increased tubular reabsorption of sodium in compensatory renal growth. Am J Physiol. 1973 Mar;224(3):565–571. doi: 10.1152/ajplegacy.1973.224.3.565. [DOI] [PubMed] [Google Scholar]
- Wen S. F., Wong N. L., Evanson R. L., Lockhart E. A., Dirks J. H. Micropuncture studies of sodium transport in the remnant kidney of the dog. The effect of graded volume expansion. J Clin Invest. 1973 Feb;52(2):386–387. doi: 10.1172/JCI107195. [DOI] [PMC free article] [PubMed] [Google Scholar]


